STREPTOCOCCUS SUIS INFECTION (DIAGNOSIS, PREVENTION AND TREATMENT)
Abstract
Streptococcus suis (S. suis) is an important zoonotic pathogen, which can cause serious diseases such as meningitis, pneumonia, endocarditis, polyserositis, arthritis, septicemia and abortion in pigs. In recent years, the incidence rate of streptococcal meningitis has shown a significant upward trend. For humans, the threat of S. suis is also increasing. Therefore, strengthening the prevention and control of the disease has become an urgent task. The premise of inducing meningitis is that S. suis invades the central nervous system and breaches the blood brain barrier (BBB). Due to the presence of the blood brain barrier, even though bacteria can enter the blood through the skin mucosa and other parts, a large number of bacteria in the blood cannot enter the brain through the blood brain barrier. The body relies on this barrier to protect the brain tissue from damage and maintain the homeostasis of the central nervous system. Brain microvascular endothelial cell (BMEC) is the basic component of the blood brain barrier, and a variety of neurological diseases are related to the dysfunction of the blood brain barrier, and S. suis can interact with brain microvascular endothelial cell and then cross the the blood brain barrier to cause central nervous system infection. However, the antibiotics used to treat the infection cannot pass through the barrier to reach the therapeutic target site, which is the key to the difficulty in the control of bacterial meningitis. Therefore, elucidating the mechanism of S. suis breaking through the blood brain barrier into central nervous system is an important breakthrough in developing S. suis meningitis control strategy. Due to long-term unjustified use of antibiotics, bacterial resistance has increased, and antibiotic treatment disrupts the normal homeostasis of the body and intestinal flora. The problems caused by long-term, large-scale use of antibiotics are becoming more and more serious. Meningitis caused by streptococcus suis can no longer be treated with conventional antibiotics. Therefore, It is necessary to have a thorough understanding of the pathogenesis of meningitis. This article reviews the discovery the clinical signs and symptoms of the disease, pathological changes, laboratory, measures of prevention and treatment for streptococcal infection of pigs in recent years.
References
2. Arends, J., & Zanen, H. (1988). Meningitis caused by Streptococcus suis in humans. Reviews of infectious diseases, 10(1), 131-137.
3. Benga, L., Friedl, P., & Valentin-Weigand, P. (2005). Adherence of Streptococcus suis to porcine endothelial cells. Journal of Veterinary Medicine, Series B, 52(9), 392-395.
4. Benga, L., Goethe, R., Rohde, M., & Valentin-Weigand, P. (2004). Non-encapsulated strains reveal novel insights in invasion and survival of Streptococcus suis in epithelial cells. Cellular microbiology, 6(9), 867-881.
5. Brassard, J., Gottschalk, M., & Quessy, S. (2001). Decrease of the adhesion of Streptococcus suis serotype 2 mutants to embryonic bovine tracheal cells and porcine tracheal rings. Canadian Journal of Veterinary Research, 65(3), 156.
6. Chang, P., Li, W., Shi, G., Li, H., Yang, X., Xia, Z., . . . Bei, W. (2018). The VraSR regulatory system contributes to virulence in Streptococcus suis via resistance to innate immune defenses. Virulence, 9(1), 771-782.
7. Cloutier, G., D’allaire, S., Martinez, G., Surprenant, C., Lacouture, S., & Gottschalk, M. (2003). Epidemiology of Streptococcus suis serotype 5 infection in a pig herd with and without clinical disease. Veterinary microbiology, 97(1-2), 135-151.
8. Collin, M., & Ehlers, M. (2013). The carbohydrate switch between pathogenic and immunosuppressive antigenspecific antibodies. Experimental dermatology, 22(8), 511-514.
9. Dai, J., Lai, L., Tang, H., Wang, W., Wang, S., Lu, C., . . . Wu, Z. (2018). Streptococcus suis synthesizes deoxyadenosine and adenosine by 5’-nucleotidase to dampen host immune responses. Virulence, 9(1), 1509-1520.
10. de Greeff, A., Buys, H., Verhaar, R., Dijkstra, J., van Alphen, L., & Smith, H. E. (2002). Contribution of fibronectinbinding protein to pathogenesis of Streptococcus suis serotype 2. Infection and immunity, 70(3), 1319-1325.
11. Dekker, N., Bouma, A., Daemen, I., Klinkenberg, D., van Leengoed, L., Wagenaar, J. A., & Stegeman, A. (2013). Effect of spatial separation of pigs on spread of Streptococcus suis serotype 9. PLoS One, 8(4), e61339.
12. Deng, S., Xu, T., Fang, Q., Yu, L., Zhu, J., Chen, L., . . . Zhou, R. (2018). The surface-exposed protein SntA contributes to complement evasion in zoonotic Streptococcus suis. Frontiers in Immunology, 9, 1063.
13. Done, S., Williamson, S. M., & Strugnell, B. W. (2012). Nervous and locomotor systems. Diseases of swine, 10, 303-305.
14. Feng, Y., Zhang, H., Wu, Z., Wang, S., Cao, M., Hu, D., & Wang, C. (2014). Streptococcus suis infection: an emerging/reemerging challenge of bacterial infectious diseases? Virulence, 5(4), 477-497.
15. Gelberg, H. B. (2017). Alimentary system and the peritoneum, omentum, mesentery, and peritoneal cavity. Pathologic basis of veterinary disease, 324.
16. Gottschalk, M., & Segura, M. (2000). The pathogenesis of the meningitis caused by Streptococcus suis: the unresolved questions. Veterinary microbiology, 76(3), 259-272.
17. Gottschalk, M., Segura, M., & Xu, J. (2007). Streptococcus suis infections in humans: the Chinese experience and the situation in North America. Animal health research reviews, 8(1), 29-45.
18. Guo, G., Du, D., Yu, Y., Zhang, Y., Qian, Y., & Zhang, W. (2021). Pan-genome analysis of Streptococcus suis serotype 2 revealed genomic diversity among strains of different virulence. Transboundary and Emerging Diseases, 68(2), 637-647.
19. Haataja, S., Tikkanen, K., Hytönen, J., & Finne, J. (1996). The Galα1–4Gal-binding adhesin of Streptococcus suis, a Gram-positive meningitis-associated bacterium. Toward Anti-Adhesion Therapy for Microbial Diseases, 25-34.
20. Hedegaard, S. S., Zaccarin, M., & Lindberg, J. (2013). Septic arthritis caused by Streptococcus suis. Ugeskrift for Laeger, 175(22), 1574-1575.
21. Hlebowicz, M., Jakubowski, P., & Smiatacz, T. (2019). Streptococcus suis meningitis: epidemiology, clinical presentation and treatment. Vector-Borne and Zoonotic Diseases, 19(8), 557-562.
22. Hughes, J. M., Wilson, M. E., Wertheim, H. F., Nghia, H. D. T., Taylor, W., & Schultsz, C. (2009). Streptococcus suis: an emerging human pathogen. Clinical infectious diseases, 48(5), 617-625.
23. Jiang, X., Yang, Y., Zhou, J., Zhu, L., Gu, Y., Zhang, X., . . . Fang, W. (2016). Roles of the putative type IV-like secretion system key component VirD4 and PrsA in pathogenesis of Streptococcus suis type 2. Frontiers in cellular and infection microbiology, 6, 172.
24. LeBel, G., Vaillancourt, K., Yi, L., Gottschalk, M., & Grenier, D. (2018). Dipeptidylpeptidase IV of Streptococcus suis degrades the porcine antimicrobial peptide PR-39 and neutralizes its biological properties. Microbial pathogenesis, 122, 200-206.
25. Li, Q., Fu, Y., Ma, C., He, Y., Yu, Y., Du, D., . . . Zhang, W. (2017). The non-conserved region of MRP is involved in the virulence of Streptococcus suis serotype 2. Virulence, 8(7), 1274-1289.
26. Li, Q., Ma, C., Fu, Y., He, Y., Yu, Y., Du, D., . . . Zhang, W. (2017). Factor H specifically capture novel Factor H-binding proteins of Streptococcus suis and contribute to the virulence of the bacteria. Microbiological research, 196, 17-25.
27. Li, T., & Yu, X. (2019). Isolation and identification of Streptococcus suis. Swine Production(3), 116-118.
28. Lin, X., Huang, C., Shi, J., Wang, R., Sun, X., Liu, X., . . . Jin, M. (2015). Investigation of pathogenesis of H1N1 influenza virus and swine Streptococcus suis serotype 2 co-infection in pigs by microarray analysis. PLoS One, 10(4), e0124086.
29. Liu, M., Xia, X., Liu, X., & Kasianenko, O. (2021). Research Progress on the pathogenic mechanism of Streptococcus suis 2. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 23(104), 30-35.
30. Liu, W., Tan, M., Zhang, C., Xu, Z., Li, L., & Zhou, R. (2018). Functional characterization of murB-potABCD operon for polyamine uptake and peptidoglycan synthesis in Streptococcus suis. Microbiological research, 207, 177-187.
31. Liu, Z., Zheng, H., Gottschalk, M., Bai, X., Lan, R., Ji, S., . . . Xu, J. (2013). Development of multiplex PCR assays for the identification of the 33 serotypes of Streptococcus suis. PLoS One, 8(8), e72070.
32. Lv, Q., Hao, H., Bi, L., Zheng, Y., Zhou, X., & Jiang, Y. (2014). Suilysin remodels the cytoskeletons of human brain microvascular endothelial cells by activating RhoA and Rac1 GTPase. Protein & cell, 5(4), 261-264.
33. Musyoki, A. M., Shi, Z., Xuan, C., Lu, G., Qi, J., Gao, F., . . . Haywood, J. (2016). Structural and functional analysis of an anchorless fibronectin-binding protein FBPS from Gram-positive bacterium Streptococcus suis. Proceedings of the National Academy of Sciences, 113(48), 13869-13874.
34. Norton, P. M., Rolph, C., Ward, P. N., Bentley, R. W., & Leigh, J. A. (1999). Epithelial invasion and cell lysis by virulent strains of Streptococcus suis is enhanced by the presence of suilysin. FEMS Immunology & Medical Microbiology, 26(1), 25-35.
35. Okwumabua, O., Williamson, C. H., Pearson, T. R., & Sahl, J. W. (2020). Draft Genome Sequence of a Streptococcus suis Isolate from a Case of Cattle Meningitis. Microbiology Resource Announcements, 9(19), e00153-00120.
36. Pian, Y., Gan, S., Wang, S., Guo, J., Wang, P., Zheng, Y., . . . Yuan, Y. (2012). Fhb, a novel factor H-binding surface protein, contributes to the antiphagocytic ability and virulence of Streptococcus suis. Infection and immunity, 80(7), 2402-2413.
37. Qian, Y., Zhang, Y., Yu, Y., Li, Q., Guo, G., Fu, Y., . . . Zhang, W. (2018). SBP1 is an adhesion-associated factor without the involvement of virulence in Streptococcus suis serotype 2. Microbial pathogenesis, 122, 90-97.
38. Quessy, S., Busque, P., Higgins, R., Jacques, M., & Dubreuil, J. D. (1997). Description of an albumin binding activity for Streptococcus suis serotype 2. FEMS Microbiology Letters, 147(2), 245-250.
39. Roy, D., Takamatsu, D., Okura, M., Goyette-Desjardins, G., Van Calsteren, M.-R., Dumesnil, A., Segura, M. (2018). Capsular sialyltransferase specificity mediates different phenotypes in Streptococcus suis and Group B Streptococcus. Frontiers in microbiology, 9, 545.
40. Segura, M., Calzas, C., Grenier, D., & Gottschalk, M. (2016). Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS letters, 590(21), 3772-3799.
41. Segura, M., Fittipaldi, N., Calzas, C., & Gottschalk, M. (2017). Critical Streptococcus suis virulence factors: are they all really critical? Trends in microbiology, 25(7), 585-599.
42. Seitz, M., Valentin-Weigand, P., & Willenborg, J. (2016). Use of antibiotics and antimicrobial resistance in veterinary medicine as exemplified by the swine pathogen Streptococcus suis. How to Overcome the Antibiotic Crisis: Facts, Challenges, Technologies and Future Perspectives, 103-121.
43. Shi, J., Hu, D., Zhu, J., Zhang, X., Hou, T., Guo, J., . . . Wang, C. (2012). Capsular saliva acid of Streptococcus suis 2 influences virulence and host inflammatory responses. Wei Sheng wu xue bao= Acta Microbiologica Sinica, 52(4), 498-504.
44. Swildens, B., Stockhofe-Zurwieden, N., van der Meulen, J., Wisselink, H. J., Nielen, M., & Niewold, T. A. (2004). Intestinal translocation of Streptococcus suis type 2 EF+ in pigs. Veterinary microbiology, 103(1-2), 29-33.
45. Timoney, J. F. (2022). Streptococcus. Pathogenesis of bacterial infections in animals, 565-587.
46. Vadeboncoeur, N., Segura, M., Al-Numani, D., Vanier, G., & Gottschalk, M. (2003). Pro-inflammatory cytokine and chemokine release by human brain microvascular endothelial cells stimulated by Streptococcus suis serotype 2. FEMS Immunology & Medical Microbiology, 35(1), 49-58.
47. Vanier, G., Segura, M., Friedl, P., Lacouture, S., & Gottschalk, M. (2004). Invasion of porcine brain microvascular endothelial cells by Streptococcus suis serotype 2. Infection and immunity, 72(3), 1441-1449.
48. Vötsch, D., Willenborg, M., Oelemann, W. M., Brogden, G., & Valentin-Weigand, P. (2019). Membrane binding, cellular cholesterol content and resealing capacity contribute to epithelial cell damage induced by suilysin of Streptococcus suis. Pathogens, 9(1), 33.
49. Wang, J., Feng, Y., Wang, C., Zheng, F., Hassan, B., Zhi, L., . . . Jiang, S. (2017). Genome-wide analysis of a avirulent and reveal the strain induces pro-tective immunity against challenge with virulent Streptococcus suis Serotype 2. BMC microbiology, 17, 1-14.
50. Wang, S., Ma, M., Liang, Z., Zhu, X., Yao, H., Wang, L., & Wu, Z. (2022). Pathogenic investigations of Streptococcus pasteurianus, an underreported zoonotic pathogen, isolated from a diseased piglet with meningitis. Transboundary and Emerging Diseases, 69(5), 2609-2620.
51. Wang, Y., Gagnon, C. A., Savard, C., Music, N., Srednik, M., Segura, M., . . . Gottschalk, M. (2013). Capsular sialic acid of Streptococcus suis serotype 2 binds to swine influenza virus and enhances bacterial interactions with virus-infected tracheal epithelial cells. Infection and immunity, 81(12), 4498-4508.
52. Xia, X., Qin, W., Zhu, H., Wang, X., Jiang, J., & Hu, J. (2019). How Streptococcus suis serotype 2 attempts to avoid attack by host immune defenses. Journal of Microbiology, Immunology and Infection, 52(4), 516-525.
53. Xia, X., Wang, X., Wei, X., Jiang, J., & Hu, J. (2018). Methods for the detection and characterization of Streptococcus suis: from conventional bacterial culture methods to immunosensors. Antonie Van Leeuwenhoek, 111, 2233-2247.
54. Xu, M., Wang, S., Li, L., Lei, L., Liu, Y., Shi, W., . . . Xu, M. (2010). Secondary infection with Streptococcus suis serotype 7 increases the virulence of highly pathogenic porcine reproductive and respiratory syndrome virus in pigs. Virology journal, 7(1), 1-9.
55. Yang, Q.-P., Liu, W.-P., Guo, L.-X., Jiang, Y., Li, G.-D., Bai, Y.-Q., . . . Jing, H.-Q. (2009). Autopsy report of four cases who died from Streptococcus suis infection, with a review of the literature. European journal of clinical microbiology & infectious diseases, 28, 447-453.
56. Yin, S., Daum, R. S., & Boyle-Vavra, S. (2006). VraSR two-component regulatory system and its role in induction of pbp2 and vraSR expression by cell wall antimicrobials in Staphylococcus aureus. Antimicrobial agents and chemotherapy, 50(1), 336-343.
57. Yu, Y., Qian, Y., Du, D., Xu, C., Dai, C., Li, Q., Zhang, W. (2016). SBP2 plays an important role in the virulence changes of different artificial mutants of Streptococcus suis. Molecular bioSystems, 12(6), 1948-1962.
58. Zhang, C., Sun, W., Tan, M., Dong, M., Liu, W., Gao, T., Zhou, R. (2017). The eukaryote-like serine/threonine kinase STK regulates the growth and metabolism of zoonotic Streptococcus suis. Frontiers in cellular and infection microbiology, 7, 66.
59. Zhang, G.-x. (2012). Diagnosis and Treatment of Swine Streptococcicosis. Animal Husbandry and Feed Science, 4(6), 243.
60. Zhang, S., Wang, J., Chen, S., Yin, J., Pan, Z., Liu, K., Jiang, Y. (2016). Effects of suilysin on Streptococcus suisinduced platelet aggregation. Frontiers in cellular and infection microbiology, 6, 128.
61. Zhang, Y., Lu, P., Pan, Z., Zhu, Y., Ma, J., Zhong, X., Yao, H. (2018). SssP1, a Streptococcus suis fimbria-like protein transported by the SecY2/A2 system, contributes to bacterial virulence. Applied and Environmental Microbiology, 84(18), e01385-01318.
62. Zhao, J., Pan, S., Lin, L., Fu, L., Yang, C., Xu, Z., Zhang, A. (2015). Streptococcus suis serotype 2 strains can induce the formation of neutrophil extracellular traps and evade trapping. FEMS Microbiology Letters, 362(6).
63. Zhao, Y., Liu, G., Li, S., Wang, M., Song, J., Wang, J., Hu, F. (2011). Role of a type IV–like secretion system of Streptococcus suis 2 in the development of streptococcal toxic shock syndrome. Journal of Infectious Diseases, 204(2), 274-281.
64. Zheng, C., Ren, S., Xu, J., Zhao, X., Shi, G., Wu, J., Bei, W. (2017). Contribution of NADH oxidase to oxidative stress tolerance and virulence of Streptococcus suis serotype 2. Virulence, 8(1), 53-65.
65. Zheng, F., Shao, Z.-Q., Hao, X., Wu, Q., Li, C., Hou, H., Pan, X. (2018). Identification of oligopeptide-binding protein (OppA) and its role in the virulence of Streptococcus suis serotype 2. Microbial pathogenesis, 118, 322-329.
66. Zhou, Z., He, H., Wang, K., Shi, X., Wang, Y., Su, Y., Zhang, Y. (2020). Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science, 368(6494), eaaz7548. https://doi.org/10.1126/science.aaz7548
67. Zhou, Z., Zhu, X., Yin, R., Liu, T., Yang, S., Zhou, L., Ma, A. (2020). K63 ubiquitin chains target NLRP3 inflammasome for autophagic degradation in ox-LDL-stimulated THP-1 macrophages. Aging, 12(2), 1747. https://doi.org/10.18632/ aging.102710