ZOONOTIC DISEASES OF FISH, PREVENTION AND FIGHT AGAINST THEM
Abstract
The intensive development of industrial, recreational fishing, aquaculture and the increased demand for fish and fish products creates increased risks for the occurrence of diseases common to humans and fish. This article contains data on the main zoonoses that humans can contract from fish. Among the pathogens associated with fish, the most important infectious agents are parasites, bacteria, fungi and viruses. Food poisoning caused by consumption of fish and fish products should also not be dismissed. Recently, zoonoses have caused great concern among doctors of veterinary and humane medicine, since, in addition to reducing fish productivity, fish deaths, and financial losses, the specified pathogens of fish zoonoses cause disease in humans, and sometimes even death. Infection of people can occur in various ways, namely by contact, contact with the pathogen on damaged skin, consumption of undercooked fish products containing the pathogen, human infection through the vector is also possible. Traditional dishes with the addition of fish without proper heat treatment, such as sushi and sashimi, pose a particular danger for consumers. Specialists who have direct contact with fish or fish products, or waste from the fishing industry in the field of their professional activity are also at risk. These are fishermen, employees of fish processing plants, veterinarians, employees of public catering establishments, as well as aquarists. Effective and quick delivery of information about causative agents and methods of prevention for workers in the specified spheres of activity can significantly prevent the emergence and spread of zoonotic diseases. When developing measures to combat zoonotic diseases, it is important to use the principles outlined in the "One Health" concept. Today, it is promising and necessary to study the full range of carriers of pathogens, their geographical distribution, as well as the consequences of seasonality for the spread of infection. In addition, a clearer understanding of the morphological identification of pathogens needs to be established to better understand their occurrence in the environment and improve our knowledge in the food industry, biosecurity and medical practice.
References
2. Adams, A.M., Murrell, K.D., Cross, J.H. (1997) Parasites of fish and risks to public health. Rev Sci Tech. Aug;16(2):652-60. https://doi.org/10.20506/rst.16.2.1059.
3. Adeolu, M., Alnajar, S., Naushad, S., & S Gupta, R. (2016). Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. International journal of systematic and evolutionary microbiology, 66(12), 5575–5599. https://doi.
org/10.1099/ijsem.0.001485
4. Adroher-Auroux, F. J., & Benítez-Rodríguez, R. (2020). Anisakiasis and Anisakis: An underdiagnosed emerging disease and its main etiological agents. Research in veterinary science, 132, 535–545. https://doi.org/10.1016/j.rvsc.2020.08.003
5. Adroher-Auroux, F. J., & Benítez-Rodríguez, R. (2020). Anisakiasis and Anisakis: An underdiagnosed emerging disease and its main etiological agents. Research in veterinary science, 132, 535–545. https://doi.org/10.1016/j.rvsc.2020.08.003
6. Ageel, H. I., Arishi, H. M., Kamli, A. A., Hussein, A. M., & Bhavanarushi, S. (2017). Unusual presentation of gastrointestinal basidiobolomycosis in a 7-year-old child–case report. Am J Med Case Rep, 5(5), 131-134.
7. Aggarwal, D., & Ramachandran, A. (2020). One Health Approach to Address Zoonotic Diseases. Indian journal of community medicine : official publication of Indian Association of Preventive & Social Medicine, 45(Suppl 1), S6–S8. https://doi.org/10.4103/ijcm.IJCM_398_19
8. Agnew, W., & Barnes, A. C. (2007). Streptococcus iniae: an aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination. Veterinary microbiology, 122(1-2), 1–15. https://doi.org/10.1016/j.vetmic.2007.03.002
9. Aibinu, I. E., Smooker, P. M., & Lopata, A. L. (2019). Anisakis Nematodes in Fish and Shellfish- from infection to allergies. International journal for parasitology. Parasites and wildlife, 9, 384–393. https://doi.org/10.1016/j.ijppaw.2019.04.007
10. Algammal, A. M., Mabrok, M., Sivaramasamy, E., Youssef, F. M., Atwa, M. H., El-Kholy, A. W., Hetta, H. F., & Hozzein, W. N. (2020). Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and blaTEM, blaCTX-M, and tetA antibiotic-resistance genes. Scientific reports, 10(1), 15961. https://doi.org/10.1038/s41598-020-72264-4
11. AlYahya, S. A., Ameen, F., Al-Niaeem, K. S., Al-Sa'adi, B. A., Hadi, S., & Mostafa, A. A. (2018). Histopathological studies of experimental Aeromonas hydrophila infection in blue tilapia, Oreochromis aureus. Saudi journal of biological sciences, 25(1), 182–185. https://doi.org/10.1016/j.sjbs.2017.10.019 AlYahya, S. A., Ameen, F., Al-Niaeem, K. S., Al-Sa'adi, B. A., Hadi, S., & Mostafa, A. A. (2018). Histopathological studies of experimental Aeromonas hydrophila infection in blue
tilapia, Oreochromis aureus. Saudi journal of biological sciences, 25(1), 182–185. https://doi.org/10.1016/j.sjbs.2017.10.019
12. Anantanawat, S., Kiermeier, A., McLeod, C., & Sumner, J. (2012). A semi-quantitative risk assessment of harmful parasites in Australian finfish. South Australian Research & Development Institute.
13. Anaparthy, U. R., & Deepika, G. (2014). A case of subcutaneous zygomycosis. Indian dermatology online journal, 5(1), 51–54. https://doi.org/10.4103/2229-5178.126033
14. Anderson, R. C. (2000). Nematode Parasites of Vertebrates. Their Development and Transmission. CABI Publishing International.
15. Atmar, R. L., Baehner, F., Cramer, J. P., Lloyd, E., Sherwood, J., Borkowski, A., Mendelman, P. M., & NOR-201 Study Group (2019). Persistence of Antibodies to 2 Virus-Like Particle Norovirus Vaccine Candidate Formulations in Healthy Adults: 1-Year Follow-up With Memory Probe Vaccination. The Journal of infectious diseases, 220(4), 603–614. https://doi.org/10.1093/infdis/jiz170
16. Audicana, M. T., & Kennedy, M. W. (2008). Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clinical microbiology reviews, 21(2), 360–379. https://doi.org/10.1128/CMR.00012-07
17. Audicana, M. T., Ansotegui, I. J., de Corres, L. F., & Kennedy, M. W. (2002). Anisakis simplex: dangerous--dead and alive?. Trends in parasitology, 18(1), 20–25. https://doi.org/10.1016/s1471-4922(01)02152-3
18. Austin B. (2010). Vibrios as causal agents of zoonoses. Veterinary microbiology, 140(3-4), 310–317. https://doi.org/10.1016/j.vetmic.2009.03.015
19. Baiano, J. C., & Barnes, A. C. (2009). Towards control of Streptococcus iniae. Emerging infectious diseases, 15(12), 1891–1896. https://doi.org/10.3201/eid1512.090232
20. Balootaki, P. A., Amin, M., Haghparasti, F., & Rokhbakhsh-Zamin, F. (2017). Isolation and Detection of Erysipelothrix rhusiopathiae and Its Distribution in Humans and Animals by Phenotypical and Molecular Methods in Ahvaz-Iran in 2015. Iranian journal of medical sciences, 42(4), 377–383.
21. Barash, J. R., & Arnon, S. S. (2014). A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. The Journal of infectious diseases, 209(2), 183–191. https://doi.org/10.1093/infdis/jit449
22. Barbosa, M. M. C., Pinto, F. D. R., Ribeiro, L. F., Guriz, C. S. L., Ferraudo, A. S., Maluta, R. P., ... & Amaral, L. A. (2014). Serology and patterns of antimicrobial susceptibility in Escherichia coli isolates from pay-to-fish ponds.
23. Bargman H. (1983). Sporotrichosis of the skin with spontaneous cure--report of a second case. Journal of the American Academy of Dermatology, 8(2), 261–262. https://doi.org/10.1016/s0190-9622(83)80196-0
24. Barkham, T., Zadoks, R. N., Azmai, M. N. A., Baker, S., Bich, V. T. N., Chalker, V., Chau, M. L., Dance, D., Deepak, R. N., van Doorn, H. R., Gutierrez, R. A., Holmes, M. A., Huong, L. N. P., Koh, T. H., Martins, E., Mehershahi, K., Newton, P., Ng, L. C., Phuoc, N. N., Sangwichian, O., … Chen, S. L. (2019). One hypervirulent clone, sequence type 283, accounts for a large proportion of invasive Streptococcus agalactiae isolated from humans and diseased tilapia in Southeast Asia. PLoS neglected tropical diseases, 13(6), e0007421. https://doi.org/10.1371/journal.pntd.0007421
25. Barros, M. B., de Almeida Paes, R., & Schubach, A. O. (2011). Sporothrix schenckii and Sporotrichosis. Clinical microbiology reviews, 24(4), 633–654. https://doi.org/10.1128/CMR.00007-11
26. Benie, C. K. D., Dadié, A., Guessennd, N., N’gbesso-Kouadio, N. A., Kouame, N. Z. D., N’golo, D. C., ... & Dosso, M. (2017). Characterization of virulence potential of Pseudomonas aeruginosa isolated from bovine meat, fresh fish, and smoked fish. European Journal of Microbiology and Immunology, 7(1), 55-64.
27. Berzak, R., Scheinin, A., Davidovich, N., Regev, Y., Diga, R., Tchernov, D., & Morick, D. (2019). Prevalence of nervous necrosis virus (NNV) and Streptococcus species in wild marine fish and crustaceans from the Levantine Basin, Mediterranean Sea. Diseases of aquatic organisms, 133(1), 7–17. https://doi.org/10.3354/dao03339
28. Bibi, F., Qaisrani, S. N., Ahmad, A. N., Akhtar, M., Khan, B. N., & Ali, Z. (2015). Occurrence of Salmonella in freshwater fishes: A review. Journal of Animal and Plant Sciences, 25(3), 303-310.
29. Bonifaz, A., Saúl, A., Paredes-Solis, V., Fierro, L., Rosales, A., Palacios, C., & Araiza, J. (2007). Sporotrichosis in childhood: clinical and therapeutic experience in 25 patients. Pediatric dermatology, 24(4), 369–372. https://doi.org/10.1111/j.1525-1470.2007.00452.x
30. Borges, J. N., Cunha, L. F., Santos, H. L., Monteiro-Neto, C., & Portes Santos, C. (2012). Morphological and molecular diagnosis of anisakid nematode larvae from cutlassfish (Trichiurus lepturus) off the coast of Rio de Janeiro, Brazil. PloS one, 7(7), e40447. https://doi.org/10.1371/journal.pone.0040447
31. Boylan S. (2011). Zoonoses associated with fish. The veterinary clinics of North America. Exotic animal practice, 14(3), 427–v. https://doi.org/10.1016/j.cvex.2011.05.003
32. Buján, N., Toranzo, A. E., & Magariños, B. (2018). Edwardsiella piscicida: a significant bacterial pathogen of cultured fish. Diseases of aquatic organisms, 131(1), 59-71.
33. Butt, A. A., Aldridge, K. E., & Sanders, C. V. (2004). Infections related to the ingestion of seafood. Part II: parasitic infections and food safety. The Lancet. Infectious diseases, 4(5), 294–300. https://doi.org/10.1016/S1473-3099(04)01005-9
34. Caffara, M., Gustinelli, A., Mazzone, A., & Fioravanti, M. L. (2020). Multiplex PCR for simultaneous identification of the most common European Opisthorchiid and Heterophyid in fish or fish products. Food and waterborne parasitology, 19, e00081. https://doi.org/10.1016/j.fawpar.2020.e00081
35. Cardozo, M. V., Borges, C. A., Beraldo, L. G., Maluta, R. P., Pollo, A. S., Borzi, M. M., Dos Santos, L. F., Kariyawasam, S., & Ávila, F. A. (2018). Shigatoxigenic and atypical enteropathogenic Escherichia coli in fish for human consumption. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 49(4), 936–941. https://doi.org/10.1016/j.bjm.2018.02.013
36. Carmona-Salido, H., Fouz, B., Sanjuán, E., Carda, M., Delannoy, C. M. J., García-González, N., González-Candelas, F., & Amaro, C. (2021). The widespread presence of a family of fish virulence plasmids in Vibrio vulnificus stresses its relevance as a zoonotic pathogen linked to fish farms. Emerging microbes & infections, 10(1), 2128–2140. https://doi.org/10.1080/22221751.2021.1999177
37. Carson, J., Wilson, T., Douglas, M., & Barnes, A. (2019). Australian and New Zealand Standard Diagnostic Procedures (ANZSDP) for Yersiniosis in fish.
38. Center of Disease Control and Prevention (CDC). 2016. Norovirus: clinical overview. www.cdc.gov.
39. Centers for Disease Control and Prevention (CDC). 2017. Fungal diseases. Centers for Disease Control and Prevention.
40. Chai, J. Y., Shin, E. H., Lee, S. H., & Rim, H. J. (2009). Foodborne intestinal flukes in Southeast Asia. The Korean journal of parasitology, 47 Suppl(Suppl), S69–S102. https://doi.org/10.3347/kjp.2009.47.S.S69
41. Chen, H. (1995). Seafood microorganisms and seafood safety. Journal of Food and Drug Analysis, 3(3), 133-144.
42. Chinabut S., (1999). Fish disease and disorders: Viral, bacterial, and fungal infections. 2nd ed. (Woo PT, Bruno DW, eds.). Wallingford (UK): CAB International, 3.
43. Choi, B. I., Han, J. K., Hong, S. T., & Lee, K. H. (2004). Clonorchiasis and cholangiocarcinoma: etiologic relationship and imaging diagnosis. Clinical microbiology reviews, 17(3), 540–552. https://doi.org/10.1128/CMR.17.3.540-552.2004
44. Chowdhury, S., Aleem, M. A., Khan, M. S. I., Hossain, M. E., Ghosh, S., & Rahman, M. Z. (2021). Major zoonotic diseases of public health importance in Bangladesh. Veterinary medicine and science, 7(4), 1199–1210. https://doi.org/10.1002/vms3.465
45. Clausen, J. H., Madsen, H., Murrell, K. D., Van, P. T., Thu, H. N. T., Do, D. T., ... & Dalsgaard, A. (2012). Prevention and control of fish-borne zoonotic trematodes in fish nurseries, Vietnam. Emerging infectious diseases, 18(9), 1438.
46. Collins, M. D., & East, A. K. (1998). Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. Journal of applied microbiology, 84(1), 5–17. https://doi.org/10.1046/j.1365-2672.1997.00313.x
47. Cong, W., & Elsheikha, H. M. (2021). Biology, Epidemiology, Clinical Features, Diagnosis, and Treatment of Selected Fish-borne Parasitic Zoonoses. The Yale journal of biology and medicine, 94(2), 297–309.
48. Conti Díaz, I. (1987). Esporotricosis. Rev. Med. Urug, 135-47.
49. da Rosa, A. C., Scroferneker, M. L., Vettorato, R., Gervini, R. L., Vettorato, G., & Weber, A. (2005). Epidemiology of sporotrichosis: a study of 304 cases in Brazil. Journal of the American Academy of Dermatology, 52(3 Pt 1), 451–459. https://doi.org/10.1016/j.jaad.2004.11.046
50. Das, A., Acharya, S., Behera, B. K., Paria, P., Bhowmick, S., Parida, P. K., & Das, B. K. (2018). Isolation, identification and characterization of Klebsiella pneumoniae from infected farmed Indian Major Carp Labeo rohita (Hamilton 1822) in West Bengal, India. Aquaculture, 482, 111-116.
51. Deardorff T. L. (1991). Epidemiology of marine fish-borne parasitic zoonoses. The Southeast Asian journal of tropical medicine and public health, 22 Suppl, 146–149.
52. Delghandi, M. R., El-Matbouli, M., & Menanteau-Ledouble, S. (2020). Mycobacteriosis and Infections with Non-tuberculous Mycobacteria in Aquatic Organisms: A Review. Microorganisms, 8(9), 1368. https://doi.org/10.3390/microorganisms8091368
53. Diana, T. C., & Manjulatha, C. (2012). Incidence and identification of Klebsiella pneumoniae in mucosal buccal polyp of Nemipterus japonicus of Visakhapatnam Coast, India. Journal of Fisheries and Aquatic Science, 7(6), 454.
54. Díaz Camacho, S. P., Willms, K., de la Cruz Otero, M.delC., Zazueta Ramos, M. L., Bayliss Gaxiola, S., Castro Velázquez, R., Osuna Ramírez, I., Bojórquez Contreras, A., Torres Montoya, E. H., & Sánchez Gonzáles, S. (2003). Acute outbreak of gnathostomiasis in a fishing community in Sinaloa, Mexico. Parasitology international, 52(2), 133–140. https://doi.org/10.1016/s1383-5769(03)00003-5
55. Dick, T. A. (2007). Diphyllobothriasis: the Diphyllobothrium latum human infection conundrum and reconciliation with a worldwide zoonosis. In Food-borne parasitic zoonoses: Fish and plant-borne parasites (pp. 151-184). Boston, MA: Springer US.
56. Durborow, R. M. (1999). Health and safety concerns in fisheries and aquaculture. Occupational Medicine (Philadelphia, Pa.), 14(2), 373-406.
57. Eiras, J. C., Pavanelli, G. C., Takemoto, R. M., & Nawa, Y. (2018). An Overview of Fish-borne Nematodiases among Returned Travelers for Recent 25 Years- Unexpected Diseases Sometimes Far Away from the Origin. The Korean journal of parasitology, 56(3), 215–227. https://doi.org/10.3347/kjp.2018.56.3.215
58. El-Seify, M. A., Sultan, K., Elhawary, N. M., Satour, N. S., & Marey, N. M. (2021). Prevalence of heterophyid infection in tilapia fish "Orechromas niloticus" with emphasize of cats role as neglected reservoir for zoonotic Heterophyes heterophyes in Egypt. Journal of parasitic diseases : official organ of the Indian Society for Parasitology, 45(1), 35–42. https://doi.org/10.1007/s12639-020-01277-7
59. Epps, S. V., Harvey, R. B., Hume, M. E., Phillips, T. D., Anderson, R. C., & Nisbet, D. J. (2013). Foodborne Campylobacter: infections, metabolism, pathogenesis and reservoirs. International journal of environmental research and public health, 10(12), 6292–6304. https://doi.org/10.3390/ijerph10126292
60. Espelund, M., & Klaveness, D. (2014). Botulism outbreaks in natural environments - an update. Frontiers in microbiology, 5, 287. https://doi.org/10.3389/fmicb.2014.00287
61. Facciolà, A., Riso, R., Avventuroso, E., Visalli, G., Delia, S. A., & Laganà, P. (2017). Campylobacter: from microbiology to prevention. Journal of preventive medicine and hygiene, 58(2), E79–E92.
62. Faeed M, Mozafari NA, ShojaeeArany A. 2005. Isolation and identification of bacteria and fungi of spoilage in kilka meal production in Gilan province. Iranian Sci Fish J. 4(4):127–138.
63. Fernandes, M. R., Sellera, F. P., Moura, Q., Carvalho, M. P. N., Rosato, P. N., Cerdeira, L., & Lincopan, N. (2018). Zooanthroponotic Transmission of Drug-Resistant Pseudomonas aeruginosa, Brazil. Emerging infectious diseases, 24(6), 1160–1162. https://doi.org/10.3201/eid2406.180335
64. Fiorenza, E. A., Wendt, C. A., Dobkowski, K. A., King, T. L., Pappaionou, M., Rabinowitz, P., Samhouri, J. F., & Wood, C. L. (2020). It's a wormy world: Meta-analysis reveals several decades of change in the global abundance of the parasitic nematodes Anisakis spp. and Pseudoterranova spp. in marine fishes and invertebrates. Global change biology, 26(5), 2854–2866. https://doi.org/10.1111/gcb.15048
65. Fotina T.I., Petrov R.V., & Fotina O.O. (2022). Epidemiolohichna sytuatsiia za opystorkhozu v Sumskii oblastі [Epidemiological situation of opisthorchiasis in Sumy region.]. Materialy Mizhnarodnoi naukovo-praktychnoi konferentsii «Ahrarna osvita ta nauka: dosiahnennia, rol, faktory rostu» Ekolohiia, okhorona navkolyshnoho seredovyshcha ta zbalansovane pryrodokorystuvannia: osvita – nauka – vyrobnytstvo 20 zhovtnia 2022 roku Bila Tserkva S. 43-45.
66. Fotina, T. I. & Petrov, R. V. (2011). Yakisna otsinka ryby ta ryboproduktiv pry aeromonozi koropiv ta tovstolobykiv [Qualitative evaluation of fish and fish products in case of aeromonosis of carp and carp]. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii imeni S. Z. Gzhytskoho. T. 13, № 4 (50), ch. 4. [in Ukrainian].
67. Gauthier D. T. (2015). Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections. Veterinary journal (London, England : 1997), 203(1), 27–35. https://doi.org/10.1016/j.tvjl.2014.10.028
68. Gcebe, N., Michel, A. L., & Hlokwe, T. M. (2018). Non-tuberculous Mycobacterium species causing mycobacteriosis in farmed aquatic animals of South Africa. BMC microbiology, 18(1), 32. https://doi.org/10.1186/s12866-018-1177-9
69. Gillesberg Lassen, S., Ethelberg, S., Björkman, J. T., Jensen, T., Sørensen, G., Kvistholm Jensen, A., Müller, L., Nielsen, E. M., & Mølbak, K. (2016). Two listeria outbreaks caused by smoked fish consumption-using whole-genome sequencing for outbreak investigations. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 22(7), 620–624. https://doi.org/10.1016/j.cmi.2016.04.017
70. Golomazou, E., Malandrakis, E. E., Panagiotaki, P., & Karanis, P. (2021). Cryptosporidium in fish: Implications for aquaculture and beyond. Water research, 201, 117357. https://doi.org/10.1016/j.watres.2021.117357
71. Gopi, M., Kumar, T. T. A., & Prakash, S. (2016). Opportunistic pathogen Klebsiella pneumoniae isolated from Maldive’s clown fish Amphiprion nigripes with hemorrhages at Agatti Island, Lakshadweep archipelago. Int J Fisheries Aquatic Studies, 4(3), 464-467.
72. Grant, S., & Olsen, C. W. (1999). Preventing zoonotic diseases in immunocompromised persons: the role of physicians and veterinarians. Emerging infectious diseases, 5(1), 159–163. https://doi.org/10.3201/eid0501.990121 Grant, S., & Olsen, C. W. (1999). Preventing zoonotic diseases in immunocompromised persons: the role of physicians and veterinarians. Emerging infectious diseases, 5(1), 159–163. https://doi.org/10.3201/eid0501.990121
73. Guzman, E., Shotts, E. B., & Gratzek, J. B. (1986). Review of bacterial diseases of aquarium fish. In International Association for Aquatic Animal Medicine (IAAAM) Conference.
74. Haddad, V. J., Miot, H. A., Bartoli, L. D., Cardoso, A.deC., & de Camargo, R. M. (2002). Localized lymphatic sporotrichosis after fish-induced injury (Tilapia sp.). Medical mycology, 40(4), 425–427. https://doi.org/10.1080/mmy.40.4.425.427
75. Haenen, O. L., Evans, J. J., & Berthe, F. (2013). Bacterial infections from aquatic species: potential for and prevention of contact zoonoses. Revue scientifique et technique (International Office of Epizootics), 32(2), 497-507.
76. Haghighi Karsidani, S., Soltani, M., Nikbakhat-Brojeni, G., Ghasemi, M., & Skall, H. (2010). Molecular epidemiology of zoonotic streptococcosis/lactococcosis in rainbow trout (Oncorhynchus mykiss) aquaculture in Iran. Iranian journal of microbiology, 2(4), 198–209.
77. Haile, A. B., & Getahun, T. K. (2018). Isolation and identification of Escherichia coli and Edwardsiella tarda from fish harvested for human consumption from Zeway Lake, Ethiopia. African Journal of Microbiology Research, 12(20), 476-480.
78. Han, B. A., Kramer, A. M., & Drake, J. M. (2016). Global Patterns of Zoonotic Disease in Mammals. Trends in parasitology, 32(7), 565–577. https://doi.org/10.1016/j.pt.2016.04.007
79. Hashish, E., Merwad, A., Elgaml, S., Amer, A., Kamal, H., Elsadek, A., ... & Sitohy, M. (2018). Mycobacterium marinum infection in fish and man: epidemiology, pathophysiology and management; a review. Veterinary Quarterly, 38(1), 35-46.
80. Hedegaard Clausen, J., Madsen, H., Murrell, K. D., Van, P. T., Thu, H. N., Do, D. T., Nguyen Thi, L. A., Nguyen Manh, H., & Dalsgaard, A. (2012). Prevention and control of fish-borne zoonotic trematodes in fish nurseries, Vietnam. Emerging infectious diseases, 18(9), 1438–1445. https://doi.org/10.3201/eid1809.111076
81. Helmi, A. M., Mukti, A. T., Soegianto, A., & Effendi, M. H. (2020). A review of vibriosis in fisheries: public health importance. Sys Rev Pharm, 11(8), 51-58.
82. Herman, J. S., & Chiodini, P. L. (2009). Gnathostomiasis, another emerging imported disease. Clinical microbiology reviews, 22(3), 484–492. https://doi.org/10.1128/CMR.00003-09
83. Hossen, M. S., Wassens, S., & Shamsi, S. (2021). Occurrence and abundance of zoonotic nematodes in snapper Chrysophrys auratus, a popular table fish from Australian and New Zealand waters. Food and waterborne parasitology, 23, e00120.
84. Huss, H. H., Reilly, A., & Embarek, P. K. B. (2000). Prevention and control of hazards in seafood. Food control, 11(2), 149-156.
85. Huzmi, H., Ina-Salwany, M. Y., Natrah, F. M. I., Syukri, F., & Karim, M. (2019). Strategies of controlling vibriosis in fish. Asian Journal of Applied Sciences, 7(5).
86. Iregui, C. A., Comas, J., Vásquez, G. M., & Verján, N. (2016). Experimental early pathogenesis of Streptococcus agalactiae infection in red tilapia Oreochromis spp. Journal of fish diseases, 39(2), 205–215. https://doi.org/10.1111/jfd.12347
87. Jami, M., Ghanbari, M., Zunabovic, M., Domig, K. J., & Kneifel, W. (2014). Listeria monocytogenes in aquatic food products–a review. Comprehensive Reviews in Food Science and Food Safety, 13(5), 798-813.
88. Jin, L., Chen, Y., Yang, W., Qiao, Z., & Zhang, X. (2020). Complete genome sequence of fish-pathogenic Aeromonas hydrophila HX-3 and a comparative analysis: insights into virulence factors and quorum sensing. Scientific reports, 10(1), 15479. https://doi.org/10.1038/s41598-020-72484-8 Jin, L., Chen, Y., Yang, W., Qiao, Z., & Zhang, X. (2020). Complete genome sequence of fish-pathogenic Aeromonas hydrophila HX-3 and a comparative analysis: insights into virulence factors and quorum sensing. Scientific reports, 10(1), 15479. https://doi.org/10.1038/s41598-020-72484-8
89. Jones, S. R. M. (2015). Transmission dynamics of foodborne parasites in fish and shellfish. In Foodborne Parasites in the Food Supply Web (pp. 293-315). Woodhead Publishing.
90. Kenyon, E. M., Russell, L. H., & McMurray, D. N. (1984). Isolation of Sporothrix schenckii from potting soil. Mycopathologia, 87(1-2), 128. https://doi.org/10.1007/BF00436641
91. Kerie, Y., Nuru, A., & Abayneh, T. (2019). Edwardsiella Species Infection in Fish Population and Its Status in Ethiopia. Fisheries and Aquaculture Journal, 10 (2).
92. Kittigul, L., Thamjaroen, A., Chiawchan, S., Chavalitshewinkoon-Petmitr, P., Pombubpa, K., & Diraphat, P. (2016). Prevalence and Molecular Genotyping of Noroviruses in Market Oysters, Mussels, and Cockles in Bangkok, Thailand. Food and environmental virology, 8(2), 133–140. https://doi.org/10.1007/s12560-016-9228-6
93. Kwon-Chung, K. J. (1992). Medical mycology. Lea & Febiger.
94. Leal, C. A. G., Queiroz, G. A., Pereira, F. L., Tavares, G. C., & Figueiredo, H. C. P. (2019). Streptococcus agalactiae Sequence Type 283 in Farmed Fish, Brazil. Emerging infectious diseases, 25(4), 776–779. https://doi.org/10.3201/eid2504.180543
95. Lehel, J., Yaucat-Guendi, R., Darnay, L., Palotás, P., & Laczay, P. (2021). Possible food safety hazards of ready-to-eat raw fish containing product (sushi, sashimi). Critical reviews in food science and nutrition, 61(5), 867–888. https://doi.org/10.1080/10408398.2020.1749024
96. Leung, K. Y., Wang, Q., Yang, Z., & Siame, B. A. (2019). Edwardsiella piscicida: A versatile emerging pathogen of fish. Virulence, 10(1), 555–567. https://doi.org/10.1080/21505594.2019.1621648
97. Liu, G. H., Sun, M. M., Elsheikha, H. M., Fu, Y. T., Sugiyama, H., Ando, K., Sohn, W. M., Zhu, X. Q., & Yao, C. (2020). Human gnathostomiasis: a neglected food-borne zoonosis. Parasites & vectors, 13(1), 616. https://doi.org/10.1186/s13071-020-04494-4
98. Lõhmus, M., & Björklund, M. (2015). Climate change: what will it do to fish–parasite interactions?. Biological Journal of the Linnean Society, 116(2), 397-411. Lõhmus, M., & Björklund, M. (2015). Climate change: what will it do to fish–parasite interactions?. Biological Journal of the Linnean Society, 116(2), 397-411.
99. Mahajan, V. K., Sharma, N. L., Sharma, R. C., Gupta, M. L., Garg, G., & Kanga, A. K. (2005). Cutaneous sporotrichosis in Himachal Pradesh, India. Mycoses, 48(1), 25–31. https://doi.org/10.1111/j.1439-0507.2004.01058.x
100. Manivong, K., Komalamisra, C., Waikagul, J., & Radomyos, P. (2009). Opisthorchis viverrini metacercariae in cyprinoid fish from three rivers in Khammouane Province, Lao PDR. The Journal of Tropical Medicine and Parasitology, 32(1), 23-29.
101. Mantadakis, E., & Samonis, G. (2009). Clinical presentation of zygomycosis. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 15 Suppl 5, 15–20. https://doi.org/10.1111/j.1469-0691.2009.02974.x
102. Mendiratta, V., Karmakar, S., Jain, A., & Jabeen, M. (2012). Severe cutaneous zygomycosis due to Basidiobolus ranarum in a young infant. Pediatric dermatology, 29(1), 121–123. https://doi.org/10.1111/j.1525-1470.2011.01476.x
103. Meron, D., Davidovich, N., Ofek-Lalzar, M., Berzak, R., Scheinin, A., Regev, Y., Diga, R., Tchernov, D., & Morick, D. (2020). Specific pathogens and microbial abundance within liver and kidney tissues of wild marine fish from the Eastern Mediterranean Sea. Microbial biotechnology, 13(3), 770–780. https://doi.org/10.1111/1751-7915.13537
104. Meurens, F., Dunoyer, C., Fourichon, C., Gerdts, V., Haddad, N., Kortekaas, J., Lewandowska, M., Monchatre-Leroy, E., Summerfield, A., Wichgers Schreur, P. J., van der Poel, W. H. M., & Zhu, J. (2021). Animal board invited review: Risks of zoonotic disease emergence at the interface of wildlife and livestock systems. Animal : an international journal of animal bioscience, 15(6), 100241. https://doi.org/10.1016/j.animal.2021.100241
105. Migaki, G., Font, R. L., Kaplan, W., & Asper, E. D. (1978). Sporotrichosis in a Pacific white-sided dolphin (Lagenorhynchus obliquidens). American journal of veterinary research, 39(12), 1916–1919. Migaki, G., Font, R. L., Kaplan, W., & Asper, E. D. (1978). Sporotrichosis in a Pacific white-sided dolphin (Lagenorhynchus obliquidens). American journal of veterinary research, 39(12), 1916–1919.
106. Murrell, K. D. (2002). Fishborne zoonotic parasites: epidemiology, detection and elimination.
107. Nakajima, H., Inoue, M., & Mori, T. (1991). Isolation of Yersinia, Campylobacter, Plesiomonas and Aeromonas from environmental water and fresh water fishes. [Nihon Koshu Eisei Zasshi] Japanese Journal of Public Health, 38(10), 815-820. Nakajima, H., Inoue, M., & Mori, T. (1991). Isolation of Yersinia, Campylobacter, Plesiomonas and Aeromonas from environmental water and fresh water fishes. [Nihon Koshu Eisei Zasshi] Japanese Journal of Public Health, 38(10), 815-820.
108. Nazarenko, S.M. & Petrov R.V. (2015). Viznachennya sanitarnih pokaznikiv ribi u razi vilovu yiyi riznimi sposobami [Determination of sanitary indicators of fish in the case of catching it by different methods]. Naukovo-tehnIchniy byuleten Institutu tvarinnitstva NAAN Ukrayini, 114. 103–109 (in Ukranian).
109. Nguyen, T. H., Dorny, P., Nguyen, T. T. G., & Dermauw, V. (2020). Helminth infections in fish in Vietnam: A systematic review. International journal for parasitology. Parasites and wildlife, 14, 13–32. https://doi.org/10.1016/j.ijppaw.2020.12.001
110. Nielsen, J. J., Blomberg, B., Gaïni, S., & Lundemoen, S. (2018). Aortic valve endocarditis with Erysipelothrix rhusiopathiae: A rare zoonosis. Infectious disease reports, 10(3), 7770. https://doi.org/10.4081/idr.2018.7770
111. Novotny, L., Dvorska, L., Lorencova, A., Beran, V., & Pavlik, I. (2004). Fish: a potential source of bacterial pathogens for human beings. Veterinární medicína, 49(9), 343-358.
112. Obaidat, M. M., Salman, A. E., & Lafi, S. Q. (2015). Prevalence of Staphylococcus aureus in Imported Fish and Correlations between Antibiotic Resistance and Enterotoxigenicity. Journal of food protection, 78(11), 1999–2005. https://doi.org/10.4315/0362-028X.JFP-15-104
113. Odeyemi, O. A., & Ahmad, A. (2017). Antibiotic resistance profiling and phenotyping of Aeromonas species isolated from aquatic sources. Saudi journal of biological sciences, 24(1), 65–70. https://doi.org/10.1016/j.sjbs.2015.09.016 Odeyemi, O. A., & Ahmad, A. (2017). Antibiotic resistance profiling and phenotyping of Aeromonas species isolated from aquatic sources. Saudi journal of biological sciences, 24(1), 65–70. https://doi.org/10.1016/j.sjbs.2015.09.016
114. Oh, W. T., Jun, J. W., Giri, S. S., Yun, S., Kim, H. J., Kim, S. G., Kim, S. W., Han, S. J., Kwon, J., & Park, S. C. (2019). Staphylococcus xylosus Infection in Rainbow Trout (Oncorhynchusmykiss) As a Primary Pathogenic Cause of Eye Protrusion and Mortality. Microorganisms, 7(9), 330. https://doi.org/10.3390/microorganisms7090330
115. Okafor, J. I., Testrake, D., Mushinsky, H. R., & Yangco, B. G. (1984). A Basidiobolus sp. and its association with reptiles and amphibians in southern Florida. Sabouraudia, 22(1), 47–51. https://doi.org/10.1080/00362178485380081
116. Oliveira, R. V., Oliveira, M. C., & Pelli, A. (2017). Disease infection by Enterobacteriaceae family in fishes: a review. J Microbiol Exp, 4(5), 00128.
117. Pardo González, M. Á., Cavazza, G., Gustinelli, A., Caffara, M., & Fioravanti, M. (2021). Absence of anisakis nematodes in smoked farmed Atlantic salmon (Salmo salar) products on sale in European countries. Italian journal of food safety, 9(4), 8615. https://doi.org/10.4081/ijfs.2020.8615
118. Park, S. B., Aoki, T., & Jung, T. S. (2012). Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Veterinary research, 43(1), 67. https://doi.org/10.1186/1297-9716-43-67
119. Pavoni, E., Consoli, M., Suffredini, E., Arcangeli, G., Serracca, L., Battistini, R., Rossini, I., Croci, L., & Losio, M. N. (2013). Noroviruses in seafood: a 9-year monitoring in Italy. Foodborne pathogens and disease, 10(6), 533–539. https://doi.org/10.1089/fpd.2012.1399
120. Petrov, R. V. (2014). Doslidzhennia bezpechnosti ta yakosti tushok koropa, urazhenykh Aeromonas hydrophila pry dii zovnishnikh faktoriv zberihannia ta kulinarnoi obrobky [Study of the safety and quality of carp carcasses affected by Aeromonas hydrophila under the influence of external factors of storage and cooking]. Veterynarna medytsyna : mizhvidomchyi tematychnyi naukovyi zbirnyk. Kh., Vyp. 99. S. 171–174 [in Ukrainian].
121. Petrov, R., Kutakh, O., Matviievska, T., & Petrov, V. (2020). Kontrol za abiotychnymy faktoramy stavkiv Sumskoi oblasti [Control of abiotic factors of ponds of the Sumy region]. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriia: Veterynarna medytsyna, (1 (48), 37-43. https://doi.org/10.32845/bsnau.vet.2020.1.6. [in Ukrainian].
122. Phillips Savage, A. C. N., Blake, L., Suepaul, R., McHugh, O., Rodgers, R., Thomas, C., Oura, C., & Soto, E. (2022). Piscine mycobacteriosis in the ornamental fish trade in Trinidad and Tobago. Journal of fish diseases, 45(4), 547–560. https://doi.org/10.1111/jfd.13580
123. Pomaranski, E. K., Griffin, M. J., Camus, A. C., Armwood, A. R., Shelley, J., Waldbieser, G. C., LaFrentz, B. R., García, J. C., Yanong, R., & Soto, E. (2020). Description of Erysipelothrix piscisicarius sp. nov., an emergent fish pathogen, and assessment of virulence using a tiger barb (Puntigrus tetrazona) infection model. International journal of systematic and evolutionary microbiology, 70(2), 857–867. https://doi.org/10.1099/ijsem.0.003838
124. Pradeep, P. J., Suebsing, R., Sirthammajak, S., Kampeera, J., Jitrakorn, S., Saksmerprome, V., ... & Withyachumanarnkul, B. (2016). Evidence of vertical transmission and tissue tropism of Streptococcosis from naturally infected red tilapia (Oreochromis spp.). Aquaculture Reports, 3, 58-66.
125. Puk, K., & Guz, L. (2020). Occurrence of Mycobacterium spp. in ornamental fish. Annals of agricultural and environmental medicine : AAEM, 27(4), 535–539. https://doi.org/10.26444/aaem/114913
126. Rabie, M. E., El Hakeem, I., Al-Shraim, M., Al Skini, M. S., & Jamil, S. (2011). Basidiobolomycosis of the colon masquerading as stenotic colon cancer. Case reports in surgery, 2011, 685460. https://doi.org/10.1155/2011/685460
127. Rahman, M. T., Sobur, M. A., Islam, M. S., Ievy, S., Hossain, M. J., El Zowalaty, M. E., Rahman, A. T., & Ashour, H. M. (2020). Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms, 8(9), 1405. https://doi.org/10.3390/microorganisms8091405
128. Rahmati, A. R., Kiani, B., Afshari, A., Moghaddas, E., Williams, M., & Shamsi, S. (2020). World-wide prevalence of Anisakis larvae in fish and its relationship to human allergic anisakiasis: a systematic review. Parasitology research, 119(11), 3585–3594. https://doi.org/10.1007/s00436-020-06892-0
129. Raissy, M. (2017). Bacterial zoonotic disease from fish: a review. Journal of Food Microbiology, 4(2), 15-27.
130. Ramanan, P., Blumberg, A. K., Mathison, B., & Pritt, B. S. (2013). Parametrial anisakidosis. Journal of Clinical Microbiology, 51(10), 3430-3434.
131. Ramos P. (2020). Parasites in fishery products - Laboratorial and educational strategies to control. Experimental parasitology, 211, 107865. Advance online publication. https://doi.org/10.1016/j.exppara.2020.107865
132. Rasetti-Escargueil, C., Lemichez, E., & Popoff, M. R. (2019). Public Health Risk Associated with Botulism as Foodborne Zoonoses. Toxins, 12(1), 17. https://doi.org/10.3390/toxins12010017
133. Regev, Y., Davidovich, N., Berzak, R., Lau, S. C. K., Scheinin, A. P., Tchernov, D., & Morick, D. (2020). Molecular Identification and Characterization of Vibrio Species and Mycobacterium Species in Wild and Cultured Marine Fish from the Eastern Mediterranean Sea. Microorganisms, 8(6), 863. https://doi.org/10.3390/microorganisms8060863
134. Rukkawattanakul, T., Sookrung, N., Seesuay, W., Onlamoon, N., Diraphat, P., Chaicumpa, W., & Indrawattana, N. (2017). Human scFvs That Counteract Bioactivities of Staphylococcus aureus TSST-1. Toxins, 9(2), 50. https://doi.org/10.3390/toxins9020050
135. Sabry, M., Abd El-Moein, K., Hamza, E., & Abdel Kader, F. (2016). Occurrence of Clostridium perfringens Types A, E, and C in Fresh Fish and Its Public Health Significance. Journal of food protection, 79(6), 994–1000. https://doi.org/10.4315/0362-028X.JFP-15-569
136. Sackey, A., Ghartey, N., & Gyasi, R. (2017). Subcutaneous basidiobolomycosis: A Case Report. Ghana medical journal, 51(1), 43–46. https://doi.org/10.4314/gmj.v51i1.9 Sackey, A., Ghartey, N., & Gyasi, R. (2017). Subcutaneous basidiobolomycosis: A Case Report. Ghana medical journal, 51(1), 43–46. https://doi.org/10.4314/gmj.v51i1.9
137. Saijuntha, W., Sithithaworn, P., Petney, T. N., & Andrews, R. H. (2021). Foodborne zoonotic parasites of the family Opisthorchiidae. Research in veterinary science, 135, 404–411. https://doi.org/10.1016/j.rvsc.2020.10.024
138. Salikin, N. H., Nappi, J., Majzoub, M. E., & Egan, S. (2020). Combating Parasitic Nematode Infections, Newly Discovered Antinematode Compounds from Marine Epiphytic Bacteria. Microorganisms, 8(12), 1963. https://doi.org/10.3390/microorganisms8121963
139. Shamsi, S. (2016). Seafood-borne parasitic diseases in Australia: how much do we know about them?. Microbiology Australia, 37(1), 27-29.
140. Shamsi, S. (2019). Seafood-borne parasitic diseases: A “one-health” approach is needed. Fishes, 4(1), 9.
141. Shamsi, S., & Butcher, A. R. (2011). First report of human anisakidosis in Australia. The Medical journal of Australia, 194(4), 199–200. https://doi.org/10.5694/j.1326-5377.2011.tb03772.x
142. Shamsi, S., & Sheorey, H. (2018). Seafood-borne parasitic diseases in Australia: are they rare or underdiagnosed?. Internal medicine journal, 48(5), 591–596. https://doi.org/10.1111/imj.13786
143. Shamsi, S., Steller, E., & Zhu, X. (2021). The occurrence and clinical importance of infectious stage of Echinocephalus (Nematoda: Gnathostomidae) larvae in selected Australian edible fish. Parasitology international, 83, 102333. https://doi.org/10.1016/j.parint.2021.102333
144. Sharma, N. L., Sharma, R. C., Gupta, M. L., Singh, P., & Gupta, N. (1990). Sporotriciiosis study of 22 cases from Himachal Pradesh. Indian Journal of Dermatology, Venereology and Leprology, 56, 296.
145. Shimamura, Y., Muwanwella, N., Chandran, S., Kandel, G., & Marcon, N. (2016). Common symptoms from an uncommon infection: gastrointestinal anisakiasis. Canadian Journal of Gastroenterology and Hepatology, 2016(1), 5176502.
146. Shin, B., & Park, W. (2018). Zoonotic Diseases and Phytochemical Medicines for Microbial Infections in Veterinary Science: Current State and Future Perspective. Frontiers in veterinary science, 5, 166. https://doi.org/10.3389/fvets.2018.00166
147. Shreef, K., Saleem, M., Saeedd, M. A., & Eissa, M. (2018). Gastrointestinal Basidiobolomycosis: An Emerging, and A Confusing, Disease in Children (A Multicenter Experience). European journal of pediatric surgery : official journal of Austrian Association of Pediatric Surgery ... [et al] = Zeitschrift fur Kinderchirurgie, 28(2), 194–199. https://doi.org/10.1055/s-0037-1598104
148. Singh, R., Xess, I., Ramavat, A. S., & Arora, R. (2008). Basidiobolomycosis: a rare case report. Indian journal of medical microbiology, 26(3), 265–267.
149. Skowron, K., Wiktorczyk, N., Grudlewska, K., Wałecka-Zacharska, E., Paluszak, Z., Kruszewski, S., & Gospodarek-Komkowska, E. (2019). Phenotypic and genotypic evaluation of Listeria monocytogenes strains isolated from fish and fish processing plants. Annals of Microbiology, 69, 469-482.
150. Smith, S. A. (2011). Working with fish, limiting zoonotic diseases. Global Aquaculture Advocate.
151. Sripa, B., Bethony, J. M., Sithithaworn, P., Kaewkes, S., Mairiang, E., Loukas, A., Mulvenna, J., Laha, T., Hotez, P. J., & Brindley, P. J. (2011). Opisthorchiasis and Opisthorchis-associated cholangiocarcinoma in Thailand and Laos. Acta tropica, 120 Suppl 1(Suppl 1), S158–S168. https://doi.org/10.1016/j.actatropica.2010.07.006
152. Steffen, R., deBernardis, C., & Baños, A. (2003). Travel epidemiology--a global perspective. International journal of antimicrobial agents, 21(2), 89–95. https://doi.org/10.1016/s0924-8579(02)00293-5
153. Suthar, J., & Shamsi, S. (2021). The occurrence and abundance of infective stages of zoonotic nematodes in selected edible fish sold in Australian fish markets. Microbial pathogenesis, 154, 104833. https://doi.org/10.1016/j.micpath.2021.104833
154. Tantrawatpan, C., Intapan, P. M., Janwan, P., Sanpool, O., Lulitanond, V., Srichantaratsamee, C., Anamnart, W., & Maleewong, W. (2013). Molecular identification of Paragonimus species by DNA pyrosequencing technology. Parasitology international, 62(3), 341–345. https://doi.org/10.1016/j.parint.2012.11.008
155. Toranzo, A. E., Magariños, B., & Romalde, J. L. (2005). A review of the main bacterial fish diseases in mariculture systems. Aquaculture, 246(1-4), 37-61.
156. Tran, A. K. T., Doan, H. T., Do, A. N., Nguyen, V. T., Hoang, S. X., Le, H. T. T., ... & Le, T. A. (2019). Prevalence, species distribution, and related factors of fish-borne trematode infection in Ninh Binh province, Vietnam. BioMed research international, 2019(1), 8581379.
157. Traoré, O., Nyholm, O., Siitonen, A., Bonkoungou, I. J., Traoré, A. S., Barro, N., & Haukka, K. (2015). Prevalence and diversity of Salmonella enterica in water, fish and lettuce in Ouagadougou, Burkina Faso. BMC microbiology, 15, 151. https://doi.org/10.1186/s12866-015-0484-7
158. Uzal, F. A., Freedman, J. C., Shrestha, A., Theoret, J. R., Garcia, J., Awad, M. M., Adams, V., Moore, R. J., Rood, J. I., & McClane, B. A. (2014). Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future microbiology, 9(3), 361–377. https://doi.org/10.2217/fmb.13.168
159. Vaiyapuri, M., Joseph, T. C., Rao, B. M., Lalitha, K. V., & Prasad, M. M. (2019). Methicillin-Resistant Staphylococcus aureus in Seafood: Prevalence, Laboratory Detection, Clonal Nature, and Control in Seafood Chain. Journal of food science, 84(12), 3341–3351. https://doi.org/10.1111/1750-3841.14915
160. Valle, J., Lopera, E., Sánchez, M. E., Lerma, R., & Ruiz, J. L. (2012). Spontaneous splenic rupture and Anisakis appendicitis presenting as abdominal pain: a case report. Journal of medical case reports, 6, 114. https://doi.org/10.1186/1752-1947-6-114
161. Vinjé, J., Green, J., Lewis, D. C., Gallimore, C. I., Brown, D. W., & Koopmans, M. P. (2000). Genetic polymorphism across regions of the three open reading frames of "Norwalk-like viruses". Archives of virology, 145(2), 223–241. https://doi.org/10.1007/s007050050020
162. Volpe, E., Mandrioli, L., Errani, F., Serratore, P., Zavatta, E., Rigillo, A., & Ciulli, S. (2019). Evidence of fish and human pathogens associated with doctor fish (Garra rufa, Heckel, 1843) used for cosmetic treatment. Journal of fish diseases, 42(12), 1637–1644. https://doi.org/10.1111/jfd.13087
163. Williams, M., Hernandez-Jover, M., & Shamsi, S. (2021). Parasites of zoonotic interest in selected edible freshwater fish imported to Australia. Food and waterborne parasitology, 26, e00138. https://doi.org/10.1016/j.fawpar.2021.e00138
164. Wimalasena, S. H. M. P., Pathirana, H. N. K. S., De Silva, B. C. J., Hossain, S., Sugaya, E., Nakai, T., & Heo, G. J. (2018). Antibiotic resistance and virulence-associated gene profiles of Edwardsiella tarda isolated from cultured fish in Japan. Turkish Journal of Fisheries and Aquatic Sciences, 19(2), 141-147.
165. Wolfe, N. D., Dunavan, C. P., & Diamond, J. (2007). Origins of major human infectious diseases. Nature, 447(7142), 279–283. https://doi.org/10.1038/nature05775
166. World Health Organization (WHO). 2021. Zoonotic disease: emerging public health threats in the region. http://www.emro.who.int/fr/about-who/rc61/zoonotic-diseases.html.
167. Wrobel, A., Leo, J. C., & Linke, D. (2019). Overcoming Fish Defences: The Virulence Factors of Yersinia ruckeri. Genes, 10(9), 700. https://doi.org/10.3390/genes10090700
168. Yagoub, S. O. (2009). Isolation of Enterobacteriaceae and Pseudomonas spp. from raw fish sold in fish market in Khartoum state. Journal of bacteriology Research, 1(7), 85-88.
169. You, H. J., Lee, J. H., Oh, M., Hong, S. Y., Kim, D., Noh, J., Kim, M., & Kim, B. S. (2021). Tackling Vibrio parahaemolyticus in ready-to-eat raw fish flesh slices using lytic phage VPT02 isolated from market oyster. Food research international (Ottawa, Ont.), 150(Pt A), 110779. https://doi.org/10.1016/j.foodres.2021.110779
170. Yu, J. E., Cho, M. Y., Kim, J. W., & Kang, H. Y. (2012). Large antibiotic-resistance plasmid of Edwardsiella tarda contributes to virulence in fish. Microbial pathogenesis, 52(5), 259-266.
171. Zadoks, R. N., Barkham, T., Crestani, C., Nguyen, N. P., Sirmanapong, W., & Chen, S. L. (2020, October). Population growth, climate change and intensification of the aquaculture industry as drivers of invasive disease emergence in humans in Southeast Asia. In The 6th World One Health Congress (Vol. 30).
172. Ziarati, M., Zorriehzahra, M. J., Hassantabar, F., Mehrabi, Z., Dhawan, M., Sharun, K., ... & Shamsi, S. (2022). Zoonotic diseases of fish and their prevention and control. Veterinary Quarterly, 42(1), 95-118.
173. Zorriehzahra, M. E. J., Mehrabi, M. R., & Nazari, A. (2014, October). Can viral nervous necrosis (VNN) disease be considered as a new invasion or new zoonotic disease? Assessing the zoonotic potential of aquatic animal diseases. In 9th International Symposium on Viruses of Lower Vertebrates (pp. 1-4).