ТЕРМОПРОГРАМУЮЧА ДЕСОРБЦІЙНА МАС-СПЕКТРОМЕТРІЯ ЯК МЕТОД ВИЗНАЧЕННЯ КОРЕЛЯЦІЙ МІЖ ДІНАМІКОЮ ТЕРМІЧНОЇ ДЕСТРУКЦІЇ ТА МОРФОЛОГІЧНИМИ ПАРАМЕТРАМИ БІОГЕННІХ КАЛЬЦІТІВ
Ключові слова:
програмована температурою десорбційна мас-спектрометрія, біогенний кальцит, яєчна оболонка, оболонка молюсків, белемніт, дисперсність кальциту, біокомпозит
Анотація
Методом температурно-програмованої мас-спектрометрії (ТПД-МС) вивчені спектри термодесорбції біогенних кальцитів, таких як природній вапняк, шкаралупа яєць різних видів птахів, раковини молюсків і головоногих копалин, а також наночастинок кальциту. Показано, що структура спектра корелює з морфологічними параметрами і має залежність від ступеня дисперсності зразків біогенних кальцитів. Збільшення вмісту нано-, ультра-і мікродисперсних складових в біокомпозиті на основі кальциту призводить до істотної зміни виду спектра термодесорбції, що виявляється в появі додаткових температурних областей десорбції (піків) і зміщення їх в область більш низьких температур.
Посилання
1. Ahmed Shakeel, Bisetty Krishna, Ikram Saiqa, Kanchi Suvardhan (2018). Biocomposites : biomedical and environmental applications. Pan Stanford Publishing; CRC Press. p. 496.
2. Bain, M.M. , McDade, K., Burchmore, R. , Law, A., Wilson, P.W., Schmutz, M., Preisinger, R. and Dunn, I.C. (2013) Enhancing the egg's natural defence against bacterial penetration by increasing cuticle deposition. Animal Genetics, 44(6), pp. 661-668. doi: 10.1111/age.12071
3. Cesar A.de Araujo Filho, Dmitry Yu.Murzin (2018). A structure sensitivity approach to temperature programmed desorption. Applied Catalysis A: General, vol. 550, pp. 48-56, doi.org/10.1016/j.apcata.2017.11.001.
4. D’Alba, L. (2014). Antimicrobial properties of a nanostructured eggshell from a compostnesting bird. J. Exp Biol., vol. 217. pp.1116–1121.
5. Danylchenko, S.N., Chyvanov, V.D., Riabyshev, A.H., Novykov, S.V., Stepanenko, A.A., Kuznetsov, V.N., Myronets, E.V., Maryichuk, A.V., Yanovskaia, A.A., Bordunova, O.H., Buhai, A.N. Yssledovanye termycheskoho razlozhenyia pryrodnykh karbonatov kaltsyia metodom temperaturno-prohrammyrovannoi mass-spektrometryy [Investigation of the thermal decomposition of natural calcium carbonates by temperature-programmed mass spectrometry], Zhurnal nano- ta elektronnoi fizyky [Journal of nano- and electronic physics], vol. 8 Nomer 4(1) 2016/10/1, cc. 04031(3ss) doi: 10.21272/jnep.8(4(1)).04031. [in Ukrainian].
6. Dash, S., Kamruddin, M. and Tyagi, A. (1997). Mass spectrometry based evolved gas analysis system for thermal decomposition studies. Bulletin of Materials Science, vol. 20(3), pp. 359-375.
7. Freire, M. N., Holanda, J. N. F. (2006). Characterization of avian eggshell waste aiming its use in a ceramic wall tile paste, Cerâmica, vol.52 no.324 São Paulo, doi: 10.1590/S0366-69132006000400004.
8. Hester, P.(2017), Egg Innovations and Strategies for Improvements, San Diego, CA: Elsevier Inc., 625
9. Hincke, M.(2012). The eggshell: structure, composition and mineralization. Frontiers in Bioscience, vol. 17, pp. 1266-1280
10. James J. De Yoreo Ed (2013) Research Methods in Biomineralization Science, In: Methods in Enzymology 532,. Academic Pres. pp. 614.
11. Kazuyoshi Endo, Toshihiro Kogure, Hiromichi Nagasawa (2018). Biomineralization: From Molecular and Nanostructural Analyses to Environmental Science. Springer: Singapore, pp. 413.
12. Ketta, M. and Tumova, E. (2016) Eggshell structure, measurements, and quality-affecting factors in laying hens: a review. Czech J. Anim. Sci., vol. 61, pp. 299-309.
13. Kulik T. (2012). Use of TPD–MS and Linear Free Energy Relationships for Assessing the Reactivity of Aliphatic Carboxylic Acids on a Silica Surface. J. Phys. Chem. C, vol. 116 (1), pp. 570–580.
14. Kulik, T. V., Lipkovska, N. A., Barvinchenko, V. N., Palyanytsya, B. B., Kazakova, O. A., Dovbiy, O. A., & Pogorelyi, V. K. (2009). Interactions between bioactive ferulic acid and fumed silica by UV-vis spectroscopy, FT-IR, TPD MS investigation and quantum chemical methods. Journal of colloid and interface science, 339(1), 60–68. https://doi.org/10.1016/j.jcis.2009.07.055
15. Kuznetsov, V. N., Yanovskaia, A. A., Novykov, S. V. y dr. (2015) Yzuchenye termoaktyvyruemыkh protsessov эkstraktsyy CO2 yz karbonatnыkh apatytov s yspolzovanyem hazovoi khromatohrafyy [Study of thermally activated processes of CO2 extraction from carbonate apatites using gas chromatography], Zhurnal nano- ta elektronnoi fizyky [Journal of nano- and electronic physics]. T. 7. –№ 3. –03034-1. 03034-9 (9cc). URL: http://jnep. sumdu. edu. ua/download/numbers/2015/3/articles/jnep_20 15_V7_03034. pdf (rezhym dostupu). [in Ukrainian]
16. Laca, A., Laca, A., & Díaz, M. (2017). Eggshell waste as catalyst: A review. Journal of environmental management, 197, 351–359. https://doi.org/10.1016/j.jenvman.2017.03.088
17. Mohamed, M., Yusup, S., Maitra, S. (2012). Decomposition study of calcium carbonate in cockle shell. Journal of Engineering Science and Technology, vol. 7, No. 1, pp. 1 – 10.
18. Nastasiienko N, Palianytsia B, Kartel M, Larsson M, Kulik T. (2019) Thermal Transformation of Caffeic Acid on the Nanoceria Surface Studied by Temperature Programmed Desorption Mass-Spectrometry, Thermogravimetric Analysis and FT–IR Spectroscopy. Colloids and Interfaces; 3(1):34. https://doi.org/10.3390/colloids3010034
19. Oates J.A.H. (1998) Lime and Limestone: Chemistry and Technology, Production and Uses. Wiley-VCH Verlag GmbH, pp. 460.
20. Partha Sarathi Guru, Sukalyan Dash (2014). Sorption on eggshell waste—A review on ultrastructure, biomineralization and other applications. Advances in Colloid and Interface Science,Volume 209, 49-67,ISSN 0001-8686. doi: 10.1016/j.cis.2013.12.013.
21. Patricia Y. Hester Ed. San Diego (2017) Egg Innovations and Strategies for Improvements, CA: Elsevier Inc., 625 p.
22. Peter W. Wilson, Ceara S. Suther, Maureen M. Bain, Wiebke Icken, Anita Jones, Fiona Quinlan-Pluck, Victor Olori, Joël Gautron, Ian C. Dunn (2017). Understanding avian egg cuticle formation in the oviduct: a study of its origin and deposition, Biology of Reproduction, Volume 97, Issue 1, Pages 39–49, https://doi.org/10.1093/biolre/iox070
23. Pokrovskij, V. (2010). Маss spectrometry of nanosystems. Surface, vol. 2 (17), pp. 63–93.
24. Pokrovskiy, V. A. (1996). Temperature-Programmed Desorption Mass Spectrometry (TPDMS) of Dispersed Oxides. Adsorption Science & Technology, 14(5), 301–317. https://doi.org/10.1177/026361749601400505
25. Pokrovskyi V.A. (2010) Mass-spektrometryia nanostrukturyrovannыkh system [Mass spectrometry of nanostructured systems] Poverkhnost, vyp. [Surface, vol.]2(17), рр. 63–93. [in Ukrainian].
26. Rao, A. (2015). Biomineralization Sourcebook: Characterization of Biominerals and Biomimetic Materials, Elaine DiMasi and Laurie B. Gower (Eds), CRC Press, Taylor & Francis Group, Boca Raton, FL, 2014, 432 pages. ISBN 13:978-1-4665-1835-3. Microscopy and Microanalysis, 21(2), 534-534. doi:10.1017/S1431927614014640
27. Rongqing Zhang, Liping Xie, Zhenguang Yan (2019). Biomineralization Mechanism of the Pearl Oyster, Pinctada fucata, Springer: Singapore. pp. 737.
28. Tatsuko Hatakeyama, Hyoe Hatakeyama (2005). Thermal Properties of Green Polymers and Biocomposites, In.: Hot Topics in Thermal Analysis and Calorimetry 4, Springer: Netherlands, p. 336. doi: 10.1007/1-4020-2354-5.
29. Tetiana V. Kulik (2012). Use of TPD–MS and Linear Free Energy Relationships for Assessing the Reactivity of Aliphatic Carboxylic Acids on a Silica Surface”, J. Phys. Chem. C, 116 (1), pp. 570–580. doi: 10.1021/jp204266c.
30. Tsuboi, Y. and Koga, N. (2018). Thermal Decomposition of Biomineralized Calcium Carbonate: Correlation between the Thermal Behavior and Structural Characteristics of Avian Eggshell. ACS Sustainable Chem. Eng., vol. 6, (4), pp. 5283–5295.
31. Yoji Tsuboi and Nobuyoshi Koga (2018). Thermal Decomposition of Biomineralized Calcium Carbonate: Correlation between the Thermal Behavior and Structural Characteristics of Avian Eggshell. ACS Sustainable Chemistry & Engineering 6 (4), 5283-5295 DOI: 10.1021/acssuschemeng.7b04943
2. Bain, M.M. , McDade, K., Burchmore, R. , Law, A., Wilson, P.W., Schmutz, M., Preisinger, R. and Dunn, I.C. (2013) Enhancing the egg's natural defence against bacterial penetration by increasing cuticle deposition. Animal Genetics, 44(6), pp. 661-668. doi: 10.1111/age.12071
3. Cesar A.de Araujo Filho, Dmitry Yu.Murzin (2018). A structure sensitivity approach to temperature programmed desorption. Applied Catalysis A: General, vol. 550, pp. 48-56, doi.org/10.1016/j.apcata.2017.11.001.
4. D’Alba, L. (2014). Antimicrobial properties of a nanostructured eggshell from a compostnesting bird. J. Exp Biol., vol. 217. pp.1116–1121.
5. Danylchenko, S.N., Chyvanov, V.D., Riabyshev, A.H., Novykov, S.V., Stepanenko, A.A., Kuznetsov, V.N., Myronets, E.V., Maryichuk, A.V., Yanovskaia, A.A., Bordunova, O.H., Buhai, A.N. Yssledovanye termycheskoho razlozhenyia pryrodnykh karbonatov kaltsyia metodom temperaturno-prohrammyrovannoi mass-spektrometryy [Investigation of the thermal decomposition of natural calcium carbonates by temperature-programmed mass spectrometry], Zhurnal nano- ta elektronnoi fizyky [Journal of nano- and electronic physics], vol. 8 Nomer 4(1) 2016/10/1, cc. 04031(3ss) doi: 10.21272/jnep.8(4(1)).04031. [in Ukrainian].
6. Dash, S., Kamruddin, M. and Tyagi, A. (1997). Mass spectrometry based evolved gas analysis system for thermal decomposition studies. Bulletin of Materials Science, vol. 20(3), pp. 359-375.
7. Freire, M. N., Holanda, J. N. F. (2006). Characterization of avian eggshell waste aiming its use in a ceramic wall tile paste, Cerâmica, vol.52 no.324 São Paulo, doi: 10.1590/S0366-69132006000400004.
8. Hester, P.(2017), Egg Innovations and Strategies for Improvements, San Diego, CA: Elsevier Inc., 625
9. Hincke, M.(2012). The eggshell: structure, composition and mineralization. Frontiers in Bioscience, vol. 17, pp. 1266-1280
10. James J. De Yoreo Ed (2013) Research Methods in Biomineralization Science, In: Methods in Enzymology 532,. Academic Pres. pp. 614.
11. Kazuyoshi Endo, Toshihiro Kogure, Hiromichi Nagasawa (2018). Biomineralization: From Molecular and Nanostructural Analyses to Environmental Science. Springer: Singapore, pp. 413.
12. Ketta, M. and Tumova, E. (2016) Eggshell structure, measurements, and quality-affecting factors in laying hens: a review. Czech J. Anim. Sci., vol. 61, pp. 299-309.
13. Kulik T. (2012). Use of TPD–MS and Linear Free Energy Relationships for Assessing the Reactivity of Aliphatic Carboxylic Acids on a Silica Surface. J. Phys. Chem. C, vol. 116 (1), pp. 570–580.
14. Kulik, T. V., Lipkovska, N. A., Barvinchenko, V. N., Palyanytsya, B. B., Kazakova, O. A., Dovbiy, O. A., & Pogorelyi, V. K. (2009). Interactions between bioactive ferulic acid and fumed silica by UV-vis spectroscopy, FT-IR, TPD MS investigation and quantum chemical methods. Journal of colloid and interface science, 339(1), 60–68. https://doi.org/10.1016/j.jcis.2009.07.055
15. Kuznetsov, V. N., Yanovskaia, A. A., Novykov, S. V. y dr. (2015) Yzuchenye termoaktyvyruemыkh protsessov эkstraktsyy CO2 yz karbonatnыkh apatytov s yspolzovanyem hazovoi khromatohrafyy [Study of thermally activated processes of CO2 extraction from carbonate apatites using gas chromatography], Zhurnal nano- ta elektronnoi fizyky [Journal of nano- and electronic physics]. T. 7. –№ 3. –03034-1. 03034-9 (9cc). URL: http://jnep. sumdu. edu. ua/download/numbers/2015/3/articles/jnep_20 15_V7_03034. pdf (rezhym dostupu). [in Ukrainian]
16. Laca, A., Laca, A., & Díaz, M. (2017). Eggshell waste as catalyst: A review. Journal of environmental management, 197, 351–359. https://doi.org/10.1016/j.jenvman.2017.03.088
17. Mohamed, M., Yusup, S., Maitra, S. (2012). Decomposition study of calcium carbonate in cockle shell. Journal of Engineering Science and Technology, vol. 7, No. 1, pp. 1 – 10.
18. Nastasiienko N, Palianytsia B, Kartel M, Larsson M, Kulik T. (2019) Thermal Transformation of Caffeic Acid on the Nanoceria Surface Studied by Temperature Programmed Desorption Mass-Spectrometry, Thermogravimetric Analysis and FT–IR Spectroscopy. Colloids and Interfaces; 3(1):34. https://doi.org/10.3390/colloids3010034
19. Oates J.A.H. (1998) Lime and Limestone: Chemistry and Technology, Production and Uses. Wiley-VCH Verlag GmbH, pp. 460.
20. Partha Sarathi Guru, Sukalyan Dash (2014). Sorption on eggshell waste—A review on ultrastructure, biomineralization and other applications. Advances in Colloid and Interface Science,Volume 209, 49-67,ISSN 0001-8686. doi: 10.1016/j.cis.2013.12.013.
21. Patricia Y. Hester Ed. San Diego (2017) Egg Innovations and Strategies for Improvements, CA: Elsevier Inc., 625 p.
22. Peter W. Wilson, Ceara S. Suther, Maureen M. Bain, Wiebke Icken, Anita Jones, Fiona Quinlan-Pluck, Victor Olori, Joël Gautron, Ian C. Dunn (2017). Understanding avian egg cuticle formation in the oviduct: a study of its origin and deposition, Biology of Reproduction, Volume 97, Issue 1, Pages 39–49, https://doi.org/10.1093/biolre/iox070
23. Pokrovskij, V. (2010). Маss spectrometry of nanosystems. Surface, vol. 2 (17), pp. 63–93.
24. Pokrovskiy, V. A. (1996). Temperature-Programmed Desorption Mass Spectrometry (TPDMS) of Dispersed Oxides. Adsorption Science & Technology, 14(5), 301–317. https://doi.org/10.1177/026361749601400505
25. Pokrovskyi V.A. (2010) Mass-spektrometryia nanostrukturyrovannыkh system [Mass spectrometry of nanostructured systems] Poverkhnost, vyp. [Surface, vol.]2(17), рр. 63–93. [in Ukrainian].
26. Rao, A. (2015). Biomineralization Sourcebook: Characterization of Biominerals and Biomimetic Materials, Elaine DiMasi and Laurie B. Gower (Eds), CRC Press, Taylor & Francis Group, Boca Raton, FL, 2014, 432 pages. ISBN 13:978-1-4665-1835-3. Microscopy and Microanalysis, 21(2), 534-534. doi:10.1017/S1431927614014640
27. Rongqing Zhang, Liping Xie, Zhenguang Yan (2019). Biomineralization Mechanism of the Pearl Oyster, Pinctada fucata, Springer: Singapore. pp. 737.
28. Tatsuko Hatakeyama, Hyoe Hatakeyama (2005). Thermal Properties of Green Polymers and Biocomposites, In.: Hot Topics in Thermal Analysis and Calorimetry 4, Springer: Netherlands, p. 336. doi: 10.1007/1-4020-2354-5.
29. Tetiana V. Kulik (2012). Use of TPD–MS and Linear Free Energy Relationships for Assessing the Reactivity of Aliphatic Carboxylic Acids on a Silica Surface”, J. Phys. Chem. C, 116 (1), pp. 570–580. doi: 10.1021/jp204266c.
30. Tsuboi, Y. and Koga, N. (2018). Thermal Decomposition of Biomineralized Calcium Carbonate: Correlation between the Thermal Behavior and Structural Characteristics of Avian Eggshell. ACS Sustainable Chem. Eng., vol. 6, (4), pp. 5283–5295.
31. Yoji Tsuboi and Nobuyoshi Koga (2018). Thermal Decomposition of Biomineralized Calcium Carbonate: Correlation between the Thermal Behavior and Structural Characteristics of Avian Eggshell. ACS Sustainable Chemistry & Engineering 6 (4), 5283-5295 DOI: 10.1021/acssuschemeng.7b04943
Опубліковано
2022-01-27
Як цитувати
Бордунова, О. Г., & Долбаносова, Р. В. (2022). ТЕРМОПРОГРАМУЮЧА ДЕСОРБЦІЙНА МАС-СПЕКТРОМЕТРІЯ ЯК МЕТОД ВИЗНАЧЕННЯ КОРЕЛЯЦІЙ МІЖ ДІНАМІКОЮ ТЕРМІЧНОЇ ДЕСТРУКЦІЇ ТА МОРФОЛОГІЧНИМИ ПАРАМЕТРАМИ БІОГЕННІХ КАЛЬЦІТІВ. Вісник Сумського національного аграрного університету. Серія: Ветеринарна медицина, (2 (53), 39-44. https://doi.org/10.32845/bsnau.vet.2021.2.6
Номер
Розділ
Ветеринарна медицина