МОЛЕКУЛЯРНИЙ МЕХАНІЗМ ПІРОПТОЗУ ТА ПОВ’ЯЗАНИХ З НИМ ЗАХВОРЮВАНЬ

Ключові слова: молекулярний механізм, піроптоз, захворювання.

Анотація

Основною структурною одиницею будови живих організмів є клітина, яка відіграє важливу роль у метаболічних процесах, виникненні та розвитку захворювань. Піроптоз – це захисний механізм вродженого імунітету, що унеможливлює розмноження внутрішньоклітинних патогенів. Піроптоз є формою запрограмованої некротичної загибелі клітини. За піроптозу, на відміну від інших процесів, а саме апоптозу та некрозу, в результаті активації каспази відбувається порушення цілісності плазматичної мембрани. Даний процес має особливості і відрізняється механізмом виникнення та морфологічними характеристиками процесу. Коли клітина піддається піроптозу, ядро конденсується з утворенням піроптотичного тіла. У клітинній мембрані з’являються численні пори, клітина набухає і розривається, вивільняючи свій вміст. Каспаза є гомологічним і протеолітичним ферментом у цитоплазмі клітин, який вибірково розпізнає та розщеплює пептидні зв’язки. Каспаза може індукувати різні механізми розвитку піроптозу. Крім того, газдермін також відіграє важливу роль у процесі піроптозу. Газдерміни – це функціонально різноманітні білки, що експресуються в різних типах клітин і тканин. Гасдерміни представлені 6 видами білків. Після розщеплення газдерміни можна розділити на фрагменти N і C. N-фрагмент може спричинює процес утворення пор в клітинній мембрані, що призводить до набряку клітини, розриву, відтоку цитокінів та іншого вмісту, запускаючи процес імунної відповіді організму та спричинюючи процес піроптозу. Процес виникнення піроптозу розрізняють на класичний шлях і некласичний. Класичний процес в основному залежить від каспази-1, тоді як некласичний – від активації каспази-4/5/11. Як спосіб загибелі клітин, піроптоз нерозривно пов’язаний із захворюваннями. Інфламасоми та цитокіни, що утворюються в процесі піроптозу, можуть викликати запальну реакцію в організмі, що може призвести до прояву інфекційних, неврологічних та онкологічних захворювань. За інфекційних захворювань піроптоз тісно пов’язаний з інфекційними процесами, етіологічним чинником яких є бактерії, мікроскопічні гриби та віруси. Патогени ідентифікуються специфічними білками (інфламасомами та каспазами) і, відповідно, і в клітинах організму активізуються піроптичні процеси. Збудники інфекційних захворювань є основним етіологічним фактором індукції піроптозу. При серцево-судинних захворюваннях високий вміст жиру може викликати збільшення активних форм кисню, що спричинює піроптоз ендотеліальних клітин, а також активізує процес розвитоку атеросклерозу та інсульту. Піроптоз нервових клітин бере участь у патогенезі прогресування дегенеративних захворювань центральної нервової системи, таких як хвороба Альцгеймера та хвороба Паркінсона. Піроптоз може як пригнічувати появу пухлин, так і створювати оптимальні умови для їх росту і розвитку.

Посилання

1. Dutta, P., Courties, G., Wei, Y., Leuschner, F., Gorbatov, R., Robbins, C. S., Iwamoto, Y., Thompson, B., Carlson, A. L., & Heidt, T. (2012). Myocardial infarction accelerates atherosclerosis. Nature, 487(7407), 325-329. doi:10.1038/nature11260.
2. Rogers, C., Fernandes-Alnemri, T., Mayes, L., Alnemri, D., Cingolani, G., & Alnemri, E. S. J. N. c. (2017). Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nature, 8(1), 1-14. doi:10.1038/ncomms14128.
3. Tsuboyama, K., Koyama-Honda, I., Sakamaki, Y., Koike, M., Morishita, H., & Mizushima, N. (2016). The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science, 354(6315), 1036-1041. doi:10.1126/science.aaf6136.
4. Xu, W., & Huang, Y. (2022). Regulation of Inflammatory Cell Death by Phosphorylation. Frontiers in Immunology, 13. doi:10.3389/fimmu.
5. Riedl, S. J., & Shi, Y. (2004). Molecular mechanisms of caspase regulation during apoptosis. Nature reviews Molecular cell biology, 5(11), 897-907. doi:10.1038/nrm1496.
6. Walle, L. V., & Lamkanfi, M. (2016). Pyroptosis. Current Biology, 26(13), R568-R572. doi:10.1016/j.cub.2016.02.019.
7. Shi, J., Zhao, Y., Wang, Y., Gao, W., Ding, J., Li, P., Hu, L., & Shao, F. (2014). Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 514(7521), 187-192. doi:10.1038/nature13683.
8. Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., Zhuang, Y., Cai, T., Wang, F., & Shao, F. (2015). Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 526(7575), 660-665. doi:10.1038/nature15514.
9. Shi, J., Gao, W., & Shao, F. (2017). Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends in biochemical sciences, 42(4), 245-254. doi:10.1016/j.tibs.2016.10.004.
10. Li, J., Ma, C., & Di, D. (2022). A narrative review of pyrolysis and its role in ulcerative colitis. Eur Rev Med Pharmacol Sci, 26(4), 1156-1163. doi:10.26355/eurrev_202202_28107.
11. Wang, F., Liu, W., Ning, J., Wang, J., Lang, Y., Jin, X., Zhu, K., Wang, X., Li, X., & Yang, F. (2018). Simvastatin suppresses proliferation and migration in non-small cell lung cancer via pyroptosis. International journal of biological sciences, 14(4), 406. doi:10.7150/ijbs.23542.
12. Sannino, F., Sansone, C., Galasso, C., Kildgaard, S., Tedesco, P., Fani, R., Marino, G., de Pascale, D., Ianora, A., & Parrilli, E. (2018). Pseudoalteromonas haloplanktis TAC125 produces 4-hydroxybenzoic acid that induces pyroptosis in human A459 lung adenocarcinoma cells. Scientific reports, 8(1), 1-10. doi:10.1038/s41598-018-19536-2.
13. Jorgensen, I., Rayamajhi, M., & Miao, E. A. (2017). Programmed cell death as a defence against infection. Nature reviews immunology, 17(3), 151-164. doi:10.1038/nri.2016.147.
14. Vanden Berghe, T., Hassannia, B., & Vandenabeele, P. (2016). An outline of necrosome triggers. Cellular and Molecular Life Sciences, 73(11), 2137-2152. doi: 10.1007/s00018-016-2189-y.
15. Eckhart, L., Ballaun, C., Hermann, M., VandeBerg, J. L., Sipos, W., Uthman, A., Fischer, H., Tschachler, E., & evolution. (2008). Identification of novel mammalian caspases reveals an important role of gene loss in shaping the human caspase repertoire. Molecular biology, 25(5), 831-841. doi: 10.1093/molbev/msn012.
16. Wang, Y., Gao, W., Shi, X., Ding, J., Liu, W., He, H., Wang, K., & Shao, F. (2017). Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature, 547(7661), 99-103. doi:10.1038/nature22393.
17. Demarco, B., Grayczyk, J. P., Bjanes, E., Le Roy, D., Tonnus, W., Assenmacher, C.-A., Radaelli, E., Fettrelet, T., Mack, V., & Linkermann, A. (2020). Caspase-8–dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Science advances, 6(47), eabc3465. doi:10.1126/sciadv.abc346.
18. Bergsbaken, T., Fink, S. L., & Cookson, B. T. (2009). Pyroptosis: host cell death and inflammation. Nature Reviews Microbiology, 7(2), 99-109. doi:10.1038/nrmicro2070.
19. Yazdi, A. S., Guarda, G., D’Ombrain, M. C., & Drexler, S. K. (2010). Inflammatory caspases in innate immunity and inflammation. Journal of innate immunity, 2(3), 228-237. doi:10.1159/000283688.
20. Aglietti, R. A., & Dueber, E. C. (2017). Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions. Trends in immunology, 38(4), 261-271. doi:10.1016/j.it.2017.01.003.
21. Kovacs, S. B., & Miao, E. A. (2017). Gasdermins: effectors of pyroptosis. Trends in cell biology, 27(9), 673-684. doi:10.1016/j.tcb.2017.05.005.
22. Tamura, M., Tanaka, S., Fujii, T., Aoki, A., Komiyama, H., Ezawa, K., Sumiyama, K., Sagai, T., & Shiroishi, T. (2007). Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics, 89(5), 618-629. doi:10.1016/j.ygeno.2007.01.003.
23. Das, S., Miller, M., Beppu, A. K., Mueller, J., McGeough, M. D., Vuong, C., Karta, M. R., Rosenthal, P., Chouiali, F., & Doherty, T. A. (2016). GSDMB induces an asthma phenotype characterized by increased airway responsiveness and remodeling without lung inflammation. Proceedings of the National Academy of Sciences, 113(46), 13132-13137. doi:10.1073/pnas.1610433113.
24. Saeki, N., Usui, T., Aoyagi, K., Kim, D. H., Sato, M., Mabuchi, T., Yanagihara, K., Ogawa, K., Sakamoto, H., & Yoshida, T. (2009). Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes Cancer, 48(3), 261-271. doi:10.1002/gcc.20636.
25. Ruan, J. (2019). Structural insight of gasdermin family driving pyroptotic cell death. Structural Immunology, 189-205. doi:10.1007/978-981-13-9367-9_9.
26. Feng, S., Fox, D., & Man, S. M. (2018). Mechanisms of gasdermin family members in inflammasome signaling and cell death. Journal of molecular biology, 430(18), 3068-3080. doi:10.1016/j.jmb.2018.07.002.
27. Zhao, Y., Shi, J., & Shao, F. (2018). Inflammatory caspases: activation and cleavage of gasdermin-D in vitro and during pyroptosis. In Innate Immune Activation (pp. 131-148): Springer.
28. Evavold, C. L., Ruan, J., Tan, Y., Xia, S., Wu, H., & Kagan, J. C. (2018). The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity, 48(1), 35-44. e36. doi: 10.1016/j.immuni.2017.11.013.
29. Wang, Y., Yin, B., Li, D., Wang, G., Han, X., & Sun, X. (2018). GSDME mediates caspase-3-dependent pyroptosis in gastric cancer. Biochemical biophysical research communications, 495(1), 1418-1425. doi:10.1016/j.bbrc.2017.11.156.
30. Zhang, X., & Zhang, H. (2018). Chemotherapy drugs induce pyroptosis through caspase-3-dependent cleavage of GSDME. Sci China Life Sci, 61(6), 739-740. doi:10.1007/s11427-017-9158-x.
31. Yu, X., & He, S. (2017). GSDME as an executioner of chemotherapy-induced cell death. Sci China Life Sci, 60(11), 1291-1294. doi:10.1007/s11427-017-9142-2.
32. Ji, N., Qi, Z., Wang, Y., Yang, X., Yan, Z., Li, M., Ge, Q., & Zhang, J. (2021). Pyroptosis: a new regulating mechanism in cardiovascular disease. Journal of Inflammation Research, 14, 2647. doi:10.2147/JIR.S308177.
33. Slaats, J., Ten Oever, J., van de Veerdonk, F. L., & Netea, M. G. (2016). IL-1β/IL-6/CRP and IL-18/ferritin: distinct inflammatory programs in infections. PLoS Pathogens, 12(12), e1005973. doi:10.1371/journal.ppat.1005973.
34. Wu, Y., Zhang, J., Yu, S., Li, Y., Zhu, J., Zhang, K., & Zhang, R. (2022). Cell pyroptosis in health and inflammatory diseases. Cell death discovery, 8(1), 1-8. doi:10.1038/s41420-022-00998-3.
35. Frank, D., Vince, J. E., & Differentiation. (2019). Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell death, 26(1), 99-114. doi:10.1038/s41418-018-0212-6.
36. Xia, X., Wang, X., Cheng, Z., Qin, W., Lei, L., Jiang, J., & Hu, J. (2019). The role of pyroptosis in cancer: pro-cancer or pro-“host”? Cell death disease, 10(9), 1-13. doi:10.1038/s41419-019-1883-8.
37. Broz, P. (2015). Immunology: Caspase target drives pyroptosis. Nature, 526(7575), 642-643. doi:10.1038/ nature15632.
38. Grootjans, S., Vanden Berghe, T., & Vandenabeele, P. (2017). Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differentiation, 24(7), 1184-1195. doi:10.1038/cdd.2017.65.
39. Chen, X., He, W.-t., Hu, L., Li, J., Fang, Y., Wang, X., Xu, X., Wang, Z., Huang, K., & Han, J. (2016). Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Research, 26(9), 1007-1020. doi:10.1038/cr.2016.100.
40. Sborgi, L., Rühl, S., Mulvihill, E., Pipercevic, J., Heilig, R., Stahlberg, H., Farady, C. J., Müller, D. J., Broz, P., & Hiller, S. (2016). GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. The EMBO journal, 35(16), 1766-1778. doi:10.15252/embj.201694696.
41. He, W.-t., Wan, H., Hu, L., Chen, P., Wang, X., Huang, Z., Yang, Z.-H., Zhong, C.-Q., & Han, J. (2015). Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Research, 25(12), 1285-1298. doi:10.1038/ cr.2015.139.
42. Kayagaki, N., Stowe, I. B., Lee, B. L., O’Rourke, K., Anderson, K., Warming, S., Cuellar, T., Haley, B., Roose-Girma, M., & Phung, Q. T. (2015). Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 526(7575), 666-671. doi:10.1038/nature15541.
43. Jorgensen, I., & Miao, E. A. (2015). Pyroptotic cell death defends against intracellular pathogens. Immunological reviews, 265(1), 130-142. doi:10.1111/imr.12287.
44. Martinon, F., & Tschopp, J. (2004). Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell, 117(5), 561-574. doi:10.1016/j.cell.2004.05.004.
45. Yang, D., He, Y., Muñoz-Planillo, R., Liu, Q., & Núñez, G. (2015). Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity, 43(5), 923-932. doi:10.1016/j. immuni.2015.10.009.
46. Ding, J., Wang, K., Liu, W., She, Y., Sun, Q., Shi, J., Sun, H., Wang, D.-C., & Shao, F. (2016). Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 535(7610), 111-116. doi:10.1038/nature18590.
47. Hyman, B. T., & Yuan, J. (2012). Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nature Reviews Neuroscience, 13(6), 395-406. doi:10.1038/nrn3228.
48. Chavarría-Smith, J., & Vance, R. E. (2015). The NLRP 1 inflammasomes. Immunological reviews, 265(1), 22-34. doi:10.1111/imr.12283.
49. Orning, P., Weng, D., Starheim, K., Ratner, D., Best, Z., Lee, B., Brooks, A., Xia, S., Wu, H., & Kelliher, M. A. (2018). Pathogen blockade of TAK1 triggers caspase-8–dependent cleavage of gasdermin D and cell death. Science, 362(6418), 1064-1069. doi:10.1126/science.aau2818.
50. Hou, J., Zhao, R., Xia, W., Chang, C.-W., You, Y., Hsu, J.-M., Nie, L., Chen, Y., Wang, Y.-C., & Liu, C. (2020). PD-L1- mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nature cell biology, 22(10), 1264-1275. doi:10.1038/s41556-020-0575-z.
51. Mehta, A., Prabhakar, M., Kumar, P., Deshmukh, R., & Sharma, P. (2013). Excitotoxicity: bridge to various triggers in neurodegenerative disorders. European journal of pharmacology, 698(1-3), 6-18. doi:10.1016/j.ejphar.2012.10.032.
52. Zhou, Z., He, H., Wang, K., Shi, X., Wang, Y., Su, Y., Wang, Y., Li, D., Liu, W., & Zhang, Y. (2020). Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science, 368(6494), eaaz7548. doi:10.1126/ science.aaz7548.
53. Demkow, U. (2021). Neutrophil extracellular traps (NETs) in cancer invasion, evasion and metastasis. Cancers, 13(17), 4495. doi:10.3390/cancers13174495.
54. Liu, X., Zhang, Z., Ruan, J., Pan, Y., Magupalli, V. G., Wu, H., & Lieberman, J. (2016). Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 535(7610), 153-158. doi:10.1038/nature18629.
55. Poli, G., Brancorsini, S., Cochetti, G., Barillaro, F., Egidi, M. G., & Mearini, E. (2015). Expression of inflammasomerelated genes in bladder cancer and their association with cytokeratin 20 messenger RNA. Paper presented at the Urologic Oncology: Seminars and Original Investigations.
56. Banerjee, D., Chakraborty, B., & Chakraborty, B. (2017). Anthrax: Where margins are merging between emerging threats and bioterrorism. Indian journal of dermatology, 62(5), 456. doi:10.4103/ijd.IJD_378_17.
57. Zheng, Z., Wei, C., Guan, K., Yuan, Y., Zhang, Y., Ma, S., Cao, Y., Wang, F., Zhong, H., & He, X. (2016). Bacterial E3 ubiquitin ligase IpaH4. 5 of Shigella flexneri targets TBK1 to dampen the host antibacterial response. The Journal of Immunology, 196(3), 1199-1208. doi:10.4049/jimmunol.1501045.
58. Gong, W., Shi, Y., & Ren, J. (2020). Research progresses of molecular mechanism of pyroptosis and its related diseases. Immunobiology, 225(2), 151884. doi:10.1016/j.imbio.2019.11.019.
59. Tien, M.-T., Girardin, S. E., Regnault, B., Le Bourhis, L., Dillies, M.-A., Coppée, J.-Y., Bourdet-Sicard, R., Sansonetti, P. J., & Pédron, T. (2006). Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. The Journal of Immunology, 176(2), 1228-1237. doi:10.4049/jimmunol.176.2.1228. 60. Lei, X., Zhang, Z., Xiao, X., Qi, J., He, B., & Wang, J. (2017). Enterovirus 71 inhibits pyroptosis through cleavage of gasdermin D. Journal of virology, 91(18), e01069-01017. doi:10.1128/JVI.01069-17.
61. Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., Deo, R., De Ferranti, S. D., Floyd, J., Fornage, M., & Gillespie, C. (2017). Heart disease and stroke statistics–2017 update: a report from the American Heart Association. circulation, 135(10), e146-e603. doi:10.1161/CIR.0000000000000485.
62. Zhang, Y., Liu, X., Bai, X., Lin, Y., Li, Z., Fu, J., Li, M., Zhao, T., Yang, H., & Xu, R. (2018). Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. Journal of pineal research, 64(2), e12449. doi:10.1111/jpi.12449.
63. Pan, J., Han, L., Guo, J., Wang, X., Liu, D., Tian, J., Zhang, M., & An, F. (2018). AIM2 accelerates the atherosclerotic plaque progressions in ApoE−/− mice. Biochemical biophysical research communications, 498(3), 487-494. doi:10.1016/j. bbrc.2018.03.005.
64. Hang, L., Peng, Y., Xiang, R., Li, X., & Li, Z. (2020). Ox-LDL causes endothelial cell injury through ASK1/NLRP3- mediated inflammasome activation via endoplasmic reticulum stress. Drug Design, Development Therapy, 14, 731. doi:10.2147/DDDT.S231916.
65. Zeng, Z., Jiaojiao, C., Peng, W., Yami, L., Tingting, Z., Jun, T., Shiyuan, W., Jinyan, X., Dangheng, W., & Zhisheng, J. (2019). OxLDL induces vascular endothelial cell pyroptosis through miR-125a-5p/TET2 pathway. Journal of Cellular Physiology, 234(5), 7475-7491. doi:10.1002/jcp.27509.
66. Zhou, Z., Zhu, X., Yin, R., Liu, T., Yang, S., Zhou, L., Pan, X., & Ma, A. (2020). K63 ubiquitin chains target NLRP3 inflammasome for autophagic degradation in ox-LDL-stimulated THP-1 macrophages. Aging, 12(2), 1747. doi:10.18632/ aging.102710.
67. Tan, M., Tan, L., Jiang, T., Zhu, X., Wang, H., Jia, C., & Yu, J. (2014). Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell death disease, 5(8), e1382-e1382. doi:10.1038/cddis.2014.348.
68. Hu, Y., Wang, B., Li, S., & Yang, S. (2022). Pyroptosis, and its role in central nervous system disease. Journal of molecular biology, 434(4), 167379. doi:10.1016/j.jmb.2021.167379.
69. Wang, S., Yuan, Y.-H., Chen, N.-H., & Wang, H.-B. (2019). The mechanisms of NLRP3 inflammasome/ pyroptosis activation and their role in Parkinson’s disease. International immunopharmacology, 67, 458-464. doi:10.1016/j. intimp.2018.12.019.
70. Barrington, J., Lemarchand, E., & Allan, S. M. (2017). A brain in flame; do inflammasomes and pyroptosis influence stroke pathology? Brain Pathology, 27(2), 205-212. doi:10.1111/bpa.12476.
71. D Fann, Y.-W., Lee, S., Manzanero, S., Tang, S.-C., Gelderblom, M., Chunduri, P., Bernreuther, C., Glatzel, M., Cheng, Y.-L., & Thundyil, J. (2013). Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell death disease, 4(9), e790-e790. doi:10.1038/cddis.2013.326.
72. Xu, P., Zhang, X., Liu, Q., Xie, Y., Shi, X., Chen, J., Li, Y., Guo, H., Sun, R., & Hong, Y. (2019). Microglial TREM-1 receptor mediates neuroinflammatory injury via interaction with SYK in experimental ischemic stroke. Cell death disease, 10(8), 1-17. doi:10.1038/s41419-019-1777-9.
73. Zhou, Y., Gu, Y., & Liu, J. (2019). BRD4 suppression alleviates cerebral ischemia-induced brain injury by blocking glial activation via the inhibition of inflammatory response and pyroptosis. Biochemical biophysical research communications, 519(3), 481-488. doi:10.1016/j.bbrc.2019.07.097.
74. Kim, H., Seo, J. S., Lee, S.-Y., Ha, K.-T., Choi, B. T., Shin, Y.-I., Yun, Y. J., & Shin, H. K. (2020). AIM2 inflammasome contributes to brain injury and chronic post-stroke cognitive impairment in mice. Brain, Behavior, Immunity, 87, 765-776. doi:10.1016/j.bbi.2020.03.011.
75. Li, Q., Cao, Y., Dang, C., Han, B., Han, R., Ma, H., Hao, J., & Wang, L. (2020). Inhibition of double-strand DNAsensing cGAS ameliorates brain injury after ischemic stroke. EMBO molecular medicine, 12(4), e11002. doi:10.15252/ emmm.201911002.
76. Chen, L. C., Wang, L. J., Tsang, N. M., Ojcius, D. M., Chen, C. C., OuYang, C. N., Hsueh, C., Liang, Y., Chang, K. P., & Chen, C. C. (2012). Tumour inflammasome-derived IL-1β recruits neutrophils and improves local recurrence-free survival in EBV-induced nasopharyngeal carcinoma. EMBO molecular medicine, 4(12), 1276-1293. doi:10.1002/emmm.201201569.
77. Dinarello, C. A. (2010). Why not treat human cancer with interleukin-1 blockade? Cancer Metastasis Reviews, 29(2), 317-329. doi:10.1007/s10555-010-9229-0.
78. Zhang, H., Li, L., & Liu, L. (2018). FcγRI (CD64) contributes to the severity of immune inflammation through regulating NF-κB/NLRP3 inflammasome pathway. Life sciences, 207, 296-303. doi:10.1016/j.lfs.2018.06.015.
79. Ungerbäck, J., Belenki, D., Jawad ul-Hassan, A., Fredrikson, M., Fransén, K., Elander, N., Verma, D., & Söderkvist, P. (2012). Genetic variation and alterations of genes involved in NFκB/TNFAIP3-and NLRP3-inflammasome signaling affect susceptibility and outcome of colorectal cancer. Carcinogenesis, 33(11), 2126-2134. doi:10.1093/carcin/bgs256.
80. Wang, Y., Kong, H., Zeng, X., Liu, W., Wang, Z., Yan, X., Wang, H., & Xie, W. (2016). Activation of NLRP3 inflammasome enhances the proliferation and migration of A549 lung cancer cells. Oncology reports, 35(4), 2053-2064. doi: 10.3892/or.2016.4569.
81. Ma, X., Guo, P., Qiu, Y., Mu, K., Zhu, L., Zhao, W., Li, T., & Han, L. (2016). Loss of AIM2 expression promotes hepatocarcinoma progression through activation of mTOR-S6K1 pathway. Oncotarget, 7(24), 36185. doi:10.18632/ oncotarget.9154.
82. Brostjan, C., & Oehler, R. (2020). The role of neutrophil death in chronic inflammation and cancer. Cell death discovery, 6(1), 1-8. doi:10.1038/s41420-020-0255-6. 83. Hong, Q. Y., Wu, G.-M., Qian, G. S., Hu, C. P., Zhou, J. Y., Chen, L. A., Li, W. M., Li, S. Y., Wang, K., & Wang, Q. J. (2015). Prevention and management of lung cancer in China. Cancer Metastasis Reviews, 121(S17), 3080-3088. doi:10.1002/cncr.29584.
84. Sun, R., Wang, R., Chang, S., Li, K., Sun, R., Wang, M., & Li, Z. (2019). Long non-coding RNA in drug resistance of non-small cell lung cancer: a mini review. Frontiers in Pharmacology, 1457. doi:10.3389/fphar.2019.01457.
85. Gao, J., Qiu, X., Xi, G., Liu, H., Zhang, F., Lv, T., & Song, Y. (2018). Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in nonsmall cell lung cancer. Oncology reports, 40(4), 1971-1984. doi:10.3892/or.2018.6634.
86. Peng, J., Chen, X., Cheng, H., Xu, Z., Wang, H., Shi, Z., Liu, J., Ning, X., & Peng, H. (2019). Silencing of KCNK15AS1 inhibits lung cancer cell proliferation via upregulation of miR202 and miR370. Oncology letters, 18(6), 5968-5976. doi:10.3892/ ol.2019.10944.
87. Xi, G., Gao, J., Wan, B., Zhan, P., Xu, W., Lv, T., & Song, Y. (2019). GSDMD is required for effector CD8+ T cell responses to lung cancer cells. International immunopharmacology, 74, 105713. doi:10.1016/j.intimp.2019.105713.
88. Lu, H., Zhang, S., Wu, J., Chen, M., Cai, M.-C., Fu, Y., Li, W., Wang, J., Zhao, X., & Yu, Z. (2018). Molecular targeted therapies elicit concurrent apoptotic and GSDME-dependent pyroptotic tumor cell death. Clinical Cancer Research, 24(23), 6066-6077. doi:10.1158/1078-0432.CCR-18-1478.
89. Zhang, C.-c., Li, C.-g., Wang, Y.-f., Xu, L.-h., He, X.-h., Zeng, Q.-z., Zeng, C.-y., Mai, F.-y., Hu, B., & Ouyang, D.-y. (2019). Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/ GSDME activation. Apoptosis, 24(3), 312-325. doi:10.1007/s10495-019-01515-1.
90. Graham, D. Y. (2015). Helicobacter pylori update: gastric cancer, reliable therapy, and possible benefits. Gastroenterology, 148(4), 719-731. e713. doi: 10.1053/j.gastro.2015.01.040.
91. Wei, L., Sun, J., Zhang, N., Zheng, Y., Wang, X., Lv, L., Liu, J., Xu, Y., Shen, Y., & Yang, M. (2020). Noncoding RNAs in gastric cancer: implications for drug resistance. Molecular cancer, 19(1), 1-17. doi:10.1186/s12943-020-01185-7.
92. Komiyama, H., Aoki, A., Tanaka, S., Maekawa, H., Kato, Y., Wada, R., Maekawa, T., Tamura, M., & Shiroishi, T. (2010). Alu-derived cis-element regulates tumorigenesis-dependent gastric expression of GASDERMIN B (GSDMB). Genes genetic systems, 85(1), 75-83. doi:10.1266/ggs.85.75.
93. Wang, W. J., Chen, D., Jiang, M. Z., Xu, B., Li, X. W., Chu, Y., Zhang, Y. J., Mao, R., Liang, J., & Fan, D. M. (2018). Downregulation of gasdermin D promotes gastric cancer proliferation by regulating cell cycle-related proteins. Journal of digestive diseases, 19(2), 74-83. doi:10.1111/1751-2980.12576.
94. Hergueta-Redondo, M., Sarrió, D., Molina-Crespo, Á., Megias, D., Mota, A., Rojo-Sebastian, A., García-Sanz, P., Morales, S., Abril, S., & Cano, A. (2014). Gasdermin-B promotes invasion and metastasis in breast cancer cells. PloS one, 9(3), e90099. doi:10.1371/journal.pone.0090099.
95. Pizato, N., Luzete, B. C., Kiffer, L. F. M. V., Corrêa, L. H., de Oliveira Santos, I., Assumpção, J. A. F., Ito, M. K., & Magalhães, K. G. (2018). Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Scientific reports, 8(1), 1-12. doi:10.1038/s41598-018-20422-0.
96. Op de Beeck, K., Van Laer, L., & Van Camp, G. (2012). DFNA5, a gene involved in hearing loss and cancer: a review. Annals of Otology, Rhinology Laryngology, 121(3), 197-207. doi:10.1177/000348941212100310.
97. Burnstock, G., & Verkhratsky, A. (2010). Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell death disease, 1(1), e9-e9. doi:10.1038/cddis.2009.11.
98. Fu, W., McCormick, T., Qi, X., Luo, L., Zhou, L., Li, X., Wang, B.-C., Gibbons, H. E., Abdul-Karim, F. W., & Gorodeski, G. I. (2009). Activation of P2X 7-mediated apoptosis Inhibits DMBA/TPA-induced formation of skin papillomas and cancer in mice. BMC cancer, 9(1), 1-20. doi:10.1186/1471-2407-9-114.
99. Draganov, D., Gopalakrishna-Pillai, S., Chen, Y.-R., Zuckerman, N., Moeller, S., Wang, C., Ann, D., & Lee, P. P. (2015). Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Scientific reports, 5(1), 1-17. doi:10.1038/srep16222.
100. Mingcheng Liu, Kasianenko Oksana (2021). Extraction and reverse transcription of total RNA from mouse brainderived endothelial cells.3 infected by Streptococcus suis 2. Proceedings of the 5th Annual Conference 28 October 2021 Tallinn, Estonia “Technology transfer: innovative solutions in medicine”, 39–41. 101. Mingcheng Liu, Kasianenko Oksana (2022). Gasdermin and its role in pyroptosis. Proceedings of the III CISP conference «Science of post-industrial society: globalization and transformation processes». Grail of Science, №. 17 (2022):207–209/
Опубліковано
2022-10-14
Як цитувати
Касяненко, О. І., & Люй, М. (2022). МОЛЕКУЛЯРНИЙ МЕХАНІЗМ ПІРОПТОЗУ ТА ПОВ’ЯЗАНИХ З НИМ ЗАХВОРЮВАНЬ. Вісник Сумського національного аграрного університету. Серія: Ветеринарна медицина, (2(57), 16-25. https://doi.org/10.32845/bsnau.vet.2022.2.3