Нові досягнення у дослідженні вірусу африканської чуми свиней (огляд)

Ключові слова: африканська чума свиней; Вірус африканської чуми свиней; вакцинація; інфекційні захворювання свиней.

Анотація

У статті розглянуті публікації останніх років щодо африканської чуми свиней, яка залишається однією з найбільш економічно значущих хвороб, що завдають надзвичайної шкоди свинарству. Епізоотія АЧС в Україні існує з 2014 року, а в Китаї зареєстрована з другої половини 2018 року. АЧС - захворювання, яке на сьогодні зареєстроване в багатьох країнах Європи, і продовжує поширюватися двома шляхами: з дикими кабанами та з інфікованою свининою та продукцією з неї. А, зважаючи на інтенсивну міжнародну торгівлю та рух людей, вже загрожує іншим вільним від вірусу континентам. Вірус африканської чуми свиней характеризується великим геномом, що кодує 150-200 білків, серед яких виявлені різноманітні імунорегуляторні білки, функцією яких є запобігання чи уповільнення імунних реакцій та утворення специфічного імунітету. Основний шлях проникнення вірусу до організму свиней через дихальний та травний тракти, але клітинами-мішенями для вірусу є в основному мононуклеарні макрофаги, а рецепторний механізм досі залишається незрозумілим. Діагностичні методики та тести для виявлення вірусу африканської чуми свиней розроблені, але їх удосконалення та раннє (або своєчасне) застосування є вирішальним. Існує багато досліджень щодо вакцин проти вірусу африканської чуми свиней, включаючи інактивовані вакцини, які навіть за використання сучасних ад’ювантів не змогли вплинути на клітинний імунітет, а незначні рівні віруснейтралізуючих антитіл не захищають тварин від захворювання. Для виготовлення субодиничних вакцин використовували білки P72, P54 та P30, що підвищують рівень віруснейтралізуючих антитіл у імунізованих свиней, проте навіть цей рівень зміг забезпечити лише затримку розвитку серйозних клінічних ознак хвороби, зменшували рівень віремії та давали не більше 50% захисту. Спроби розробити живі аттенуйовані вакцини завершувалися або усвідомленням неефективності імунного захисту або значною кількістю побічних ефектів. Для розробки генно-інженерних вакцин використовували різні віруси-вектори, що повинні були підсилити клітинну імунну відповідь. Але поки що ці вакцини не змогли захистити домашніх свиней від вірусу африканської чуми свиней. Виявлена кореляція між рівнем експресії CD163 в клітинах свиней та інтенсивністю інфекції давала надію, що вилучення CD163 як рецептору для адгезії вірусу АЧС зможе зробити свиней несприйнятливими до хвороби. Проте, виведені трансгенні свині не виявили стійкості до вірусу. Обнадійливі попередні результати отримані при пероральному використанні вакцини з латвійського штаму Lv17/WB/Rie1, але випробування ще не завершені. Таким чином, пошук способів розробити ефективну вакцину триває.

Посилання

1. OIE Report_33_Current_situation_of_ASF (2019). Available online: https://www.oie.int/fileadmin/Home/eng/ Animal_Health_in_the_World/docs/pdf/Disease_cards/ASF/Report_33_Current_situation_of_ASF.pdf
2. EFSA Panel on Animal Health and Welfare (AHAW). African Swine Fever. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/4163.
3. Rebenko, H.I. & Tytova T.V. (2018). Alhorytm epizootolohichnoho audytu svynarskykh hospodarstv dlia vyiavlennia ryzykiv zanesennia virusu afrykanskoi chumy svynei. [An algorithm for epizootic audit of pig holdings to identify the risks of the African swine fever virus.] Biuleten «Veterynarna biotekhnolohiia», [Veterinary Biotechnology Bulletin] 33, 98-109. doi.org/10.31073/vet_biotech33-13 [in Ukrainian].
4. Yurchenko O. (2019) «Prysadybne» svynopoholivia vstanovylo novyi antyrekord [The backyard pig has set a new anti-record] Available online: http://asu.pigua.info/uk/news/709/?type=asu&fbclid=IwAR144F0BUgYkDztCWMte-axY4Ac8p-zRTcYSKIEOFr0LVGU363pkAVIoYJ4 [in Ukrainian].
5. Nathan Pitts, Tim Whitnall (2019). Impact of African swine fever on global markets https://www.agriculture.gov.au/abares/research-topics/agricultural-commodities/sep-2019/african-swine-fever
6. Shuang Su, Xuefeng Lv, Meng Li (2011). Diagnosis and control of African swine fever. Veterinary orientation, 30.
7. Tulman, E. R., Delhon, G. A., Ku, B. K. & Rock, D. L. (2009). African swine fever virus. Curr Top Microbiol Immunol, 328, 43.
8. Dixon, L. K., Chapman, D. A., Netherton, C. L. & Upton, C., (2013). African swine fever virus replication and genomics. VIRUS RES, 173, 3.
9. Alonso, C. et al., (2018). ICTV Virus Taxonomy Profile: Asfarviridae. J GEN VIROL, 99, 613.
10. Penrith M L,Guberti V,Depner K,et al. (2011). Preparation of African swine fever contingency plans [R]. Yerevan:Food and Agriculture Organization of the United Nations,77
11. Cwynar, P., Stojkov, J., Wlazlak K. (2019). African swine fever status in Europe. Viruses, 11(4), 310; doi.org/10.3390/v11040310
12. Qinghua Wang, Weijie Ren, Jingyue Bao, et al., The First Outbreak of African Swine Fever was Confirmed in China. China Animal Health Inspection 35 1 (2018).
13. Perez-Nunez, D. et al., (2015). CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection. PLOS ONE 10 e123714.
14. Dixon LK, Abrams CC, Chapman D G, et all. (2008). African swine fever virus [M]. Caister AP: Anim VirusesMolBiol,457-521.
15. Jia, N., Ou, Y., Pejsak, Z., Zhang, Y. & Zhang, J., (2017). Roles of African Swine Fever Virus Structural Proteins in Viral Infection. J Vet Res, 61, 135.
16. Achenbach, J. E. et al., (2017). Identification of a New Genotype of African Swine Fever Virus in Domestic Pigs from Ethiopia. Transboundary Emerg Dis, 64, 1393.
17. Rodríguez, J. M., Moreno, L. T., Alejo, A., Lacasta, A., Rodríguez, F. and Salas M.L. (2015). Genome Sequence of African Swine Fever Virus BA71, the Virulent Parental Strain of the Nonpathogenic and Tissue-Culture Adapted BA71V, PLoS One. 10(11): e0142889. doi: 10.1371/journal.pone.0142889
18. Kovalenko, G., Ducluzeau, AL., Ishchenko, L., Sushko, M., Sapachova, M., Rudova, M., Solodiankin, O., Gerilovych, A., Dagdag, R., Redlinger, M., Bezymennyi, M., Frant,M., Lange, CE, Dubchak, I., Mezhenskyi, A., Nychyk, S., Bortz, E. And Drown D (2019). Complete Genome Sequence of a Virulent African Swine Fever Virus from a Domestic Pig in Ukraine. Microbiol Resour Announc, 8(42): e00883-19. doi: 10.1128/MRA.00883-19
19. Junwei Wang, Zhiliang Wang (2010). African swine fever [M]. Beijing: China Agriculture Press,
20. Jori, F.; Bastos, A.D. (2009). Role of wild suids in the epidemiology of African swine fever. Eco. Health, 6, 296–310. doi: 10.1007/s10393-009-0248-7
21. Blome, S.; Gabriel, C.; Beer, M. (2013). Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res., 173, 122–130. doi:10.1016/j.virusres.2012.10.026
22. Guinat, C. et al., (2016). Transmission routes of African swine fever virus to domestic pigs: current knowledge and future research directions. Vet Rec 178 262.
23. XiaoJun Yang, Ze Chen, Jingze Liu, (2008). The genesis and evolution of ticks. Chinese Bulletin of Entomology, 28.
24. Costard, S.; Mur, L.; Lubroth, J.; Sanchez-Vizcaino, J.M.; Pfeiffer, D.U. (2013). Epidemiology of African swine fever virus. Virus Res., 173, 191–197. doi: 10.1016/j.virusres.2012.10.030.
25. Mur, L. et al., (2016). Thirty-Five-Year Presence of African Swine Fever in Sardinia: History, Evolution and Risk Factors for Disease Maintenance. Transbound Emerg Dis, 63, 165
26. Guberti, V. (2018). Better Trainig for Safer Food: African Swine Fever—Risk Analyzes. European Union Commision; Available online: https://ec.europa.eu/food/sites/food/files/animals/docs/ad_cm_asf_btsf-asf_20181106_pres-01.pdf
27. Sanchez, E. G. et al., (2012). African swine fever virus uses macropinocytosis to enter host cells. Plos Pathog, 8. e1002754
28. Malogolovkin, A. et al. (2015). African swine fever virus CD2v and C-type lectin gene loci mediate serological specificity. J Gen Virol, 96, 866.
29. Pietschmann, J. et al. (2016). African swine fever virus transmission cycles in Central Europe: Evaluation of wild boar-soft tick contacts through detection of antibodies against Ornithodoros erraticus saliva antigen. Bmc Vet Res, 12, 1.
30. Burrage, T. G. (2013). African swine fever virus infection in Ornithodoros ticks. Virus Res, 173, 131.
31. Luka, P. D. et al. (2016). Molecular Detection of Torque Teno Sus Virus and Coinfection with African Swine Fever Virus in Blood Samples of Pigs from Some Slaughterhouses in Nigeria. Adv Virol 6341015
32. Bernard, J. et al., (2016). Effect of O. porcinus Tick Salivary Gland Extract on the African Swine Fever Virus Infection in Domestic Pig. Plos One, 11. e147869
33. Munoz-Moreno, R., Galindo, I., Cuesta-Geijo, M. A., Barrado-Gil, L. & Alonso, C., (2015). Host cell targets for African swine fever virus. Virus Res, 209, 118.
34. Cuesta-Geijo, M. A. et al., (2016). Cholesterol Flux Is Required for Endosomal Progression of African Swine Fever Virions during the Initial Establishment of Infection. J Virol, 90, 1534.
35. Hernaez, B., Guerra, M., Salas, M. L. & Andres, G. (2016). African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes. Plos Pathog, 12, e1005595.
36. Netherton, C. L. & Wileman, T. E. (2013). African swine fever virus organelle rearrangements. Virus Res, 173, 76.
37. Rodriguez, J. M., Garcia-Escudero, R., Salas, M. L. & Andres, G. (2004). African swine fever virus structural protein p54 is essential for the recruitment of envelope precursors to assembly sites. J Virol, 78. 1313.
38. Galindo, I. et al. (2015). African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis. Virus Res, 200, 45.
39. Rock D L. (2017). Challenges for African swine fever vaccine development- " … perhaps the end of the beginning". Vet Microbiol, 206:52-58. doi: 10.1016/j.vetmic.2016.10.003.
40. Blome, S., Gabriel, C. & Beer, M. (2014). Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine, 32, 3879.
41. Gomez-Puertas, P. et al., (1996). Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. J Virol, 70, 5689.
42. Shengqiang Ge, Xiaodong Wu, Zhicheng Zhang et al., (2016). Progress in Development of African Swine Fever Vaccine. Acta Veterinaria et Zootechnica Sinica, 47, 10.
43. Ming Ren, Xiaoyu Guo, Jing Wu, et al., (2018). Progresses on CRISPR/CAS9 knockout system for African swine fever virus. Chinese Journal of Animal Infectious Diseases, 26, 90.
44. Lopera-Madrid, J. et al., (2017). Safety and immunogenicity of mammalian cell derived and Modified Vaccinia Ankara vectored African swine fever subunit antigens in swine. Vet Immunol Immunop, 185, 20.
45. Arias, M. et al., (2017). Approaches and Perspectives for Development of African Swine Fever Virus Vaccines. Vaccines (Basel), 5.
46. Krug, P. W. et al., (2015). The Progressive Adaptation of a Georgian Isolate of African Swine Fever Virus to Vero Cells Leads to a Gradual Attenuation of Virulence in Swine Corresponding to Major Modifications of the Viral Genome. J Virol, 89, 2324.
47. Argilaguet, J. M. Pérez-Martín, E., Nofrarías, M., Gallardo, C., Accensi, F., Lacasta, A., Mora, M., Ballester, M., Galindo-Cardiel, I., López-Soria, S., Escribano, J.M., Reche, P.A. and Rodríguez F. (2012). DNA Vaccination Partially Protects against African Swine Fever Virus Lethal Challenge in the Absence of Antibodies. PLoS One. 2012; 7(9): e40942. doi: 10.1371/journal.pone.0040942
48. Sunwoo, S-Y., Pérez-Núñez, D., Morozov, I., Sánchez, E.G., Gaudreault, N.N., Trujillo, J.D., Mur, L., Nogal, M., Madden, D., Urbaniak, K., Kim, I.J., Wenjun Ma, Revilla Y. and Richt J.A. (2019) DNA-Protein Vaccination Strategy Does Not Protect from Challenge with African Swine Fever Virus Armenia 2007 Strain. Vaccines (Basel).7(1): 12. doi: 10.3390/vaccines7010012
49. Popescu, L. et al. (2017). Genetically edited pigs lacking CD163 show no resistance following infection with the African swine fever virus isolate, Georgia 2007/1. Virology, 501, 102.
50. Gallardo, C. et al., (2009). Enhanced discrimination of African swine fever virus isolates through nucleotide sequencing of the p54, p72, and pB602L (CVR) genes. Virus Genes 38 85
51. Barasona, J., Gallardo, C., Cadenas-Fernández, E., Jurado, C., Rodriguez-Bertos, A., Arias, M.,& Sánchez-Vizcaíno, J. (2019). First Oral Vaccination of Eurasian Wild Boar Against African Swine Fever Virus Genotype II. Front. Vet. Sci., 6. Doi: 10.3389/fvets.2019.00137.
52. Netherton, C., Goatley, L., Reis, A., Raquel P., Nash, R., Morgan, S., Gault, L., Nieto, R., Norlin, V., Gallardo, C. Ho, Ch-S, Sanchez-Cordon, P., Taylor, G., Dixon, L. (2019). Identification and Immunogenicity of African Swine Fever Virus. Frontiers in Immunology, 10. Doi: 10.3389/fimmu.2019.01318.
53. Hongli Li, Jinshan Cao, Junwei Wang, et al., (2012). Construction and Application of Real-time Quantitative PCR for Detection of African Swine Fever Virus. China Animal Husbandary and Veterinary Medicine, 39, 37.
54. Jianhua Wang, Zhizhen Dong, Dan Zhao et al., (2016). Establishment of a TaqMan-MGB probe Real-time fluorescence PCR method for detection of African swine fever virus based on CP530R gene sequences. Heilongjiang Xumu Shouyi, 22.
55. Yunhao L., Chenfu C., Hong T., et al., (2014). Eukaryotic expression of African swine fever virus P54protein and Development of an indirect ELISA for detection of antibody against ASFV. Chinese Veterinary Science, 44, 373.
56. Xinyu Z., Weiyong Z., Shanyuan Z., et al., (2014). Establishment of colloidal gold strip for detecting antibody against African swine fever virus. Chinese Journal of Preventive Veterinary Medicine, 36, 281.
Опубліковано
2019-12-24
Як цитувати
Ху, Ц., Ребенко, Г., & Чжан, Ц. (2019). Нові досягнення у дослідженні вірусу африканської чуми свиней (огляд). Вісник Сумського національного аграрного університету. Серія: Ветеринарна медицина, (4 (47), 8-15. https://doi.org/10.32845/bsnau.vet.2019.4.2