EXPERIENCE AND PROSPECTS OF INCREASING THE PRODUCTIVITY POTENTIAL OF BUCKWHEAT IN THE CONDITIONS OF CLIMATE CHANGE

Keywords: climate, varietal agricultural technology, food security, farming systems, productivity, adaptability.

Abstract

Due to climate change, more than 80% of plant species may experience changes in diversity, current distribution and potential habitat. In recent years, the basic principles of agriculture have been revised. Attention to the development of the scientific foundations of sustainable renewable agrotechnological balanced agriculture has increased. To solve the problem of providing the population with complete proteins, a significant role, without a doubt, is assigned to cereal crops, especially buckwheat. Today, buckwheat is not only a common crop, but also a symbol of healthy life thanks to its rich nutritional and pharmacological properties. The high nutritional value of buckwheat is determined by the composition of its protein complex: buckwheat protein is highly digestible (almost 60-70%), rich in such important amino acids as lysine, tryptophan, arginine, as well as histidine – necessary for baby food. Obtaining a full-fledged buckwheat harvest is possible only with scientific justification of the application of agrotechnical measures developed in specific agro-climatic conditions. Due to further changes in the climate and a decrease in the level of moisture supply in critical periods of crop development, it is necessary to look for new ways of increasing the yield under the appropriate conditions. Buckwheat cultivation has numerous advantages for agricultural sustainability compared to other cereal crops, as it requires low inputs and is well adapted to adverse conditions. New approaches can certainly be beneficial for buckwheat production, however, further research is needed to develop new cultivars with desirable characteristics and without adversely affecting other productive traits. An important stage of prospective research is to establish the agrobiological features of growth and development of buckwheat varieties of different morphotypes, depending on the interaction of the researched elements of growing technology. This will contribute to the growth of quantitative and qualitative yield indicators, gross grain harvest and increase the sustainability of agriculture.

References

1. Aguiar, E. V., F. G. Santos, A. C. L. S. Centeno & Capriles, V. D. (2021) Influence of pseudocereals on gluten-free bread quality: A study integrating dough rheology, bread physical properties and acceptability. Food Research International (Ottawa, Ont.), 150 (Pt A), 110762. doi: 10.1016/j.foodres.2021.110762.
2. Alenius, T., T. Mökkönen & Lahelma, A. (2013) Early farming in the Northern Boreal Zone: Reassessing the history of land use in Southeastern Finland through high-resolution pollen analysis. Geoarchaeology, 28 (1), 1–24. doi: 10.1002/gea.21428.
3. Alonso-Miravalles, L. & O’Mahony, J. A. (2018) Composition, protein profile and rheological properties of pseudocereal-based protein-rich ingredients. Foods (Basel, Switzerland), 7 (5), 73. doi: 10.3390/foods7050073.
4. Antoniewska, A., J., Rutkowska, M. M. & Pineda, A. A. (2018) Antioxidative, nutritional and sensory properties of muffins with buckwheat flakes and amaranth flour blend partially substituting for wheat flour. LWT, 89, 217–23. doi: 10.1016/j.lwt.2017.10.039.
5. Appiani, M., N. S. Rabitti, C. Proserpio, E. Pagliarini & Laureati, M. (2021) Tartary buckwheat: A new plant-based ingredient to enrich corn-based gluten-free formulations. Foods (Basel, Switzerland), 10 (11), 2613. doi: 10.3390/foods10112613.
6. Arendt, E. K. (2022) Combining high-protein ingredients from pseudocereals and legumes for the development of fresh high-protein hybrid pasta: Enhanced nutritional profile. Journal of the Science of Food and Agriculture, 102 (12), 5–10. doi: 10.1002/ jsfa.11015.
7. Aubert, L., & Quinet, M. (2022) Comparison of heat and drought stress responses among twelve Tartary buckwheat (Fagopyrum tataricum) varieties. Plants, 11 (11), 1517. doi: 10.3390/plants11111517.
8. Babu, S., G. S. Yadav, R. Singh, R. K. Avasthe, A. Das, K. P. Mohapatra, M. Tahashildar, K. Kumar, M. Prabha, Thoithoi Devi, M. (2018) Production technology and multifarious uses of buckwheat (Fagopyrum spp.): A review. Indian Journal of Agronomy, 63 (4), 415–27.
9. Bielski, S., R. Marks-Bielska, Wiśniewski, P. (2022) Investigation of energy and economic balance and GHG emissions in the production of different cultivars of buckwheat (Fagopyrum esculentum Moench): A case study in Northeastern Poland. Energies, 16 (1), 17. doi: 10.3390/en16010017.
10. Bilgiçli, N., and İbanoğlu, Ş. (2015) Effect of pseudo cereal flours on some physical, chemical and sensory properties of bread. Journal of Food Science and Technology, 52 (11), 7525–9. doi: 10.1007/s13197-015-1770-y.
11. Björkman, T., and Shail, J. W. (2013) Using a buckwheat cover crop for maximum weed suppression after early vegetables. HortTechnology, 23 (5), 575–80. doi: 10.21273/HORTTECH.23.5.575.
12. Błaszczak, W., D. Zielińska, H. Zieliński, D. Szawara-Nowak, Fornal, J. (2013) Antioxidant properties and rutin content of high pressure-treated raw and roasted buckwheat groats. Food and Bioprocess Technology, 6 (1), 92–100. doi: 10.1007/s11947-011-0669-5.
13. Coțovanu, I., and Mironeasa, S. (2021) Buckwheat seeds: Impact of milling fractions and addition level on wheat bread dough rheology. Applied Sciences, 11 (4), 1731. doi: 10.3390/app11041731.
14. Deng, Y., J. Lim, G.-H. Lee, T. T. H. Nguyen, Y. Xiao, M. Piao, Kim, D. (2019) Brewing rutin-enriched lager beer with buckwheat malt as adjuncts. Journal of Microbiology and Biotechnology, 29 (6), 877–86. doi: 10.4014/jmb.1904.04041.
15. Di Cairano, M., N. Condelli, F. Galgano, Caruso, M. C. (2022) Experimental gluten-free biscuits with underexploited flours versus commercial products: Preference pattern and sensory characterisation by Check All That Apply Questionnaire. International Journal of Food Science & Technology, 57 (4), 1936–44. doi: 10.1111/ijfs.15188.
16. Diowksz, A., and Sadowska, A. (2021) Impact of sourdough and transglutaminase on gluten-free buckwheat bread quality. Food Bioscience, 43, 101309. doi: 10.1016/j.fbio.2021.101309.
17. Domańska, J., D. Leszczyńska, Badora, A. (2021) The possibilities of using common buckwheat in phytoremediation of mineral and organic soils contaminated with Cd or Pb. Agriculture, 11 (6), 562. doi: 10.3390/agriculture11060562.
18. Domingos, I. F. N., and Bilsborrow, P. E. (2021) The effect of variety and sowing date on the growth, development, yield and quality of common buckwheat (Fagopyrum esculentum Moench). European Journal of Agronomy, 126, 126264. doi: 10.1016/j.eja.2021.126264.
19. Dorohovych, V., Hrytsevich, M., Isakova, N. (2018) Effect of gluten-free flour on sensory, physico-chemical, structural and mechanical properties of wafer batter and waffles. Ukrainian Food Journal, 7 (2), 253–63. doi: 10.24263/2304-974X-2018-7-2-8.
20. Drub, T. F., F. Garcia dos Santos, Ladeia Solera Centeno, A. C., Capriles, V. D. (2021) Sorghum, millet and pseudocereals as ingredients for gluten-free whole-grain yeast rolls. International Journal of Gastronomy and Food Science, 23, 100293. doi: 10.1016/j.ijgfs.2020.100293.
21. Du, J., H. Li, J. Huang, H. Tao, A. Hassane Hamadou, D. An, Y. Qi, Xu, B. (2022) Insights into the reasons for lower digestibility of buckwheat-based foods: The structure-physical properties of starch aggregates. Journal of Cereal Science, 107, 103506. doi: 10.1016/j.jcs. 2022.103506.
22. Dzakhmisheva, I. S., and Khokonova, M. B. (2021) Functional properties of bucket granule. Proceedings of the Voronezh State University of Engineering Technologies, 83 (3), 86–91. doi: 10.20914/ 2310-1202-2021-3-86-91.
23. Dziadek, K., Kopeć, A., Pastucha, E., Piątkowska, E., Leszczyńska, T., Pisulewska, E., Witkowicz, R., Francik, R. (2016) Basic chemical composition and bioactive compounds content in selected cultivars of buckwheat whole seeds, dehulled seeds and hulls. Journal of Cereal Science, 69, 1–8. doi: 10.1016/j.jcs.2016.02.004.
24. Ertugay, M. F., Yangılar, F., Çebi, K. (2020) Ice cream with organic kavilca (buckwheat) fibre: Microstructure, thermal, physicochemical and sensory properties. Carpathian Journal of Food Science and Technology, 12 (3), 35–50. doi: 10.34302//crpjfst/2020.12.3.3.
25. Fan, Y., Ding, M-q, Zhang, K-x, Tang, Y., Fang, W., Yang, K-l, Zhang, Z-w, Cheng, J-p, Zhou, M-l. (2020) Overview and utilization of wild germplasm resources of the Genus Fagopyrum Mill. i China. Journal of Plant Genetic Resources, 21 (6), 1395–406. doi: 10.13430/j.cnki. jpgr.20200317002.
26. Farooq, S., Rehman, R. U., Pirzadah, T. B., Malik, B., Dar, F. A., Tahir, I. (2016) Chapter twenty three – Cultivation, agronomic practices, and growth performance of buckwheat. In Molecular breeding and nutritional aspects of buckwheat, ed. M. Zhou, I. Kreft, S.-H. Woo, N. Chrungoo, and G. Wieslander, 299–319. USA: Academic Press.
27. Farzana, T., Fatema, J., Hossain, F. B., Afrin, S., Rahma, S. S. (2021) Quality improvement of cakes with buckwheat flour, and its compar-ison with local branded cakes. Current Research in Nutrition and Food Science, 9 (2), 570–77. doi: 10.12944/CRNFSJ.9.2.20.
28. Gallo, M., and Montesano, D. 2023. Buckwheat: Properties, beneficial effects and technological applications. In Sustainable food science – A comprehensive approach, ed. P. Ferranti, 150–64. USA: Elsevier. doi: 10.12944/B978-0-12-823960-5.00008-1.
29. Gao, L., Xia, M., Wan, C., Jia, Y., Yang, L., Wang, M., Wang, P., Yang, Q., Yang, P., Gao, X.. (2021) Analysis of synthesis, accumulation and physicochemical properties of Tartary buckwheat starches affected by nitrogen fertilizer. Carbohydrate Polymers, 273, 118570. doi: 10.1016/j. carbpol.2021.118570.
30. Huda, M. N., Lu, S., Jahan, T., Ding, M., Jha, R., Zhang, K., Zhang, W., Georgiev, M. I., Park, S. U., Zhou, M. (2021) Treasure from garden: Bioactive compounds of buckwheat. Food Chemistry, 335, 127653. doi: 10.1016/j.foodchem. 2020.127653.
31. Hunt, H. V., Shang X., Jones, M. K. (2018) Buckwheat: A crop from outside the major Chinese domestication centres? A review of the archaeobotanical, palynological and genetic evidence. Vegetation History and Archaeobotany, 27 (3), 493–506. doi: 10.1007/s00334-017-0649-4.
32. Hussain, A., and Kaul, R. (2018) Formulation and characterization of buckwheat-barley supplemented multigrain biscuits. Current Research in Nutrition and Food Science Journal, 6 (3), 873–81. doi: 10.12944/ CRNFSJ.6.3.30.
33. Ikanović, J., Rakić, S., Popović, V., Janković, S., Glamočlijaborde, K. (2013) Agro-ecological conditions and morpho-productive properties of buckwheat. Biotechnology in Animal Husbandry, 29 (3), 555–62.
34. Iqbal, S., Thanushree, M. P., Sudha, M. L., Crassina, K. (2021) Quality characteristics of buckwheat (Fagopyrum esculentum) based nutritious ready-to-eat extruded baked snack. Journal of Food Science and Technology, 58 (5), 2034–40. doi: 10.1007/s13197-020-04940-2.
35. Jaroszewska, A., Sobolewska, M., Podsiadło, C., and Stankowski, S. (2019) The effect of fertilization and effective microorganisms on buckwheat and millet. Acta Agroph., 26(3), 15–28. https://doi.org/10.31545/aagr/114016
36. Jin, J., Okagu, O. D., Yagoub, A. E. A., Udenigwe, C. C. (2021) Effects of sonication on the in vitro digestibility and structural properties of buckwheat protein isolates. Ultrasonics Sonochemistry, 70, 105348. doi: 10.1016/j.ultsonch.2020.105348.
37. Joshi, D. C., Zhang, K., Wang, C., Chandora, R., Khurshid, M., Li, J., He, M., Georgiev, M. I., Zhou, M. (2020) Strategic enhancement of genetic gain for nutraceutical development in buckwheat: A genomics-driven perspective. Biotechnology Advances, 39, 107479. doi: 10.1016/j.biotechadv.2019.107479.
38. Kabanets, V. M., Strakholis, I. M. (2017) Ahrotekhnichni pryiomy vyroshchuvannia krupianykh kultur dlia umov pivnichno–skhidnoho Lisostepu Ukrainy. [Agrotechnical methods of growing cereal crops for the conditions of the North-Eastern Forest Steppe of Ukraine]. Instytut silskoho hospodarstva Pivnichnoho Skhodu NAAN. Sad, 20. [in Ukranian]
39. Kalinová, J., Moudrý, J., Čurn, V. (2005) Yield formation in common buckwheat (Fagopyrum Esculentum Moench). Acta Agronomica Hung., 53, 283–291. https://doi: 10.1556/AAgr.53.2005.3.5.
40. Krzyzanska, M., Hunt, H. V., Crema, E. R., Jones, M. K. (2022) Modelling the potential ecological niche of domesticated buckwheat in China: Archaeological evidence, environmental constraints and climate change. Vegetation History and Archaeobotany, 31 (4), 331–45. doi: 10.1007/s00334-021-00856-9.
41. Liashenko, V. V., Sakhno, T. V., Tryhub, O. V., Semenov, A. O. (2022) Fiziolohichna reaktsiia roslyn sortiv hrechky posivnoi Fagopyrum esculentum moench za umovy riznykh rezhymiv hidropraiminhu na rannikh etapakh ontohenezu. [Physiological reaction of plants of Fagopyrum esculentum moench buckwheat varieties under conditions of different hydropriming regimes in the early stages of ontogenesis]. Scientific Progress & Innovations, 2 (2), 30–38. https://doi.org/10.31210/visnyk2022.02.03 [in Ukrainian]
42. Liu, F., He, C., Wang, L., Wang, M. (2018) Effect of milling method on the chemical composition and antioxidant capacity of Tartary buckwheat flour. International Journal of Food Science & Technology, 53 (11), 2457–64. doi: 10.1111/ijfs.13837.
43. Liu, Y., Cai, C., Yao, Y., Xu, B. (2019) Alteration of phenolic profiles and antioxidant capacities of common buckwheat and tartary buckwheat produced in China upon thermal processing. Journal of the Science of Food and Agriculture, 99 (12), 5565–76. doi: 10.1002/jsfa.9825.
44. Long, Jiang-xue, Cheng, Hui-yan, Dai, Zhi-neng, Liu, Jian-fu. (2018) The Effect of Silicon Fertilizer on The Growth of Chives. IOP Conference Series: Earth and Environmental Science, 192, 1–6.
45. Luthar, Z., Fabjan, P., Mlinarič, K. (2021) Biotechnological methods for buckwheat breeding. Plants (Basel), 10 (8), 1547. doi: 10.3390/plants10081547.
46. Luthar, Z., Germ, M., Likar, M., Golob, A., Vogel-Mikuš, K., Pongrac, P., Kušar, A., Pravst, I., Kreft, I. (2020) Breeding buckwheat for increased levels of rutin, quercetin and other bioactive compounds with potential antiviral effects. Plants (Basel), 9 (12), 1638. doi: 10.3390/plants9121638.
47. Mikami, T., Motonishi, S., Tsutsui, S. (2018) Production, uses and cultivars of common buckwheat in Japan: An overview. Acta Agriculturae Slovenica, 111 (2), 511–17. doi: 10.14720/aas.2018.111.2.23.
48. Morishita, T., Hara, T. (2020) Important agronomic characteristics of yielding ability in common buckwheat; ecotype and ecological differentiation, preharvest sprouting resistance, shattering resistance, and lodging resistance. Breeding Science, 70 (1), 39–47. doi: 10.1270/jsbbs.19020.
49. Mota, C., Santos, M., Mauro, R., Samman, N., Matos, A. S., Torres, D., Castanheira, I. (2016) Protein content and amino acids profile of pseudocereals. Food Chemistry, 193, 55–61. doi: 10.1016/j.foodchem. 2014.11.043.
50. Motta, C., Castanheira, I., Gonzales, G. B., Delgado, I., Torres, D., Santos, M., Matos, A. S. (2019) Impact of cooking methods and malting on amino acids content in amaranth, buckwheat and quinoa. Journal of Food Composition and Analysis, 76, 58–65. doi: 10.1016/j.jfca.2018.10.001.
51. Nikitina, V. I., Vagner, V. V., Martynova, O. V. (2020) Dependence of the rutin content in buckwheat plants on the sowing method, variety and seeding rate. IOP Conference Series: Earth and Environmental Science, 548, 052037. August 01, 2020. doi: 10.1088/1755-1315/548/5/052037.
52. Nikolic, O., Pavlovic, M., Dedic, D., Sabados, V. (2019) The influence of sow density on productivity and moisture in buckwheat grain (Fagopyrum esculentum moench.) in condition of stubble sowing and irrigation. Agriculture and Forestry, 65 (4), 193–202. doi: 10.17707/ AgricultForest.65.4.17.
53. Ninomiya, K., Ina, S., Hamada, A., Yamaguchi, Y., Akao, M., Shinmachi, F., Kumagai, H., Kumagai, H. (2018) Suppressive effect of the α-amylase inhibitor albumin from buckwheat (Fagopyrum esculentum Moench) on postprandial hyperglycaemia. Nutrients, 10 (10), 1503. doi: 10.3390/nu10101503.
54. Ninomiya, K., Yamaguchi, Y., Shinmachi, F., Kumagai, H., Kumagai, H. (2022) Suppression of postprandial blood glucose elevation by buckwheat (Fagpopyrum esculentum) albumin hydrolysate and identification of the peptide responsible to the function. Food Science and Human Wellness, 11 (4), 992–8. doi: 10.1016/j.fshw.2022.03.026.
55. Norbäck, D., and Wieslander, G. (2021) A review on epidemiological and clinical studies on buckwheat allergy. Plants (Basel), 10 (3), 607. doi: 10.3390/plants10030607.
56. Qin, P., Wang, Q., Shan, F., Hou, Z., Ren, G. (2010) Nutritional composition and flavonoids content of flour from different buckwheat cultivars. International Journal of Food Science & Technology, 45 (5), 951–8. doi: 10.1111/j.1365-2621.2010.02231.x.
57. Qiu, J., Liu, Y., Yue, Y., Qin, Y., Li, Z. (2016) Dietary tartary buckwheat intake attenuates insulin resistance and improves lipid profiles in patients with type 2 diabetes: A randomized controlled trial. Nutrition Research (New York, N.Y.), 36 (12), 1392–401. doi: 10.1016/j. nutres.2016.11.007.
58. Radchenko, M. V., Butenko, A. O., Hlupak, Z. I. (2018) Vplyv systemy udobrennia ta efektyvnist rehuliatora rostu na produktyvnist hrechky v umovakh pivnichno-skhidnoho lisostepu Ukrainy. [The influence of the fertilization system and the effectiveness of the growth regulator on the productivity of buckwheat in the conditions of the northeastern forest-steppe of Ukraine]. Ukrainian Journal of Ecology, 8(2), . 89–94. DOI: 10.15421/2018.314. [in Ukranian]
59. Ratan, P., and Kothiyal, P. (2011) Fagopyrum esculentum Moench (common buckwheat) edible plant of Himalayas: A review. Asian Journal of Pharmacy and Life Science, 1 (4), 1–17.
60. Sakač, M., Pestorić, M., Mandić, A., Mišan, A., Nedeljković, N., Jambrec, D., Jovanov, P., Lazić, V., Pezo, L., Sedej, I. (2016) Shelf-life prediction of gluten-free rice-buckwheat cookies. Journal of Cereal Science, 69, 336–43. doi: 10.1016/j.jcs.2016.04.008.
61. Satoh, R., Jensen-Jarolim, E., Teshima, R. (2020) Understanding buckwheat allergies for the management of allergic reactions in humans and animals. Breeding Science, 70 (1), 85–92. doi: 10.1270/ jsbbs.19051.
62. Selimović, A., Miličević, D., Selimović, A., Žuljević, S. O., Jašića, A., Vranac, A. (2017) Properties of crackers with buckwheat sourdough. Acta Chimica Slovaca, 10 (2), 152–8. doi: 10.1515/acs-2017-0025.
63. Shevchuk, V., Demchenko, O., Yuzvenko, L. (2011) Sensitivity evaluation within the collection Fagopyrum tataricum Gaertn of different ecological origin to the buckwheat burn virus. Scientific Bulletin Uzhgorod University (Ser. Biology), 30, 161–3.
64. Shi, J., Tong, G., Yang, Q., Huang, M., Ye, H., Liu, Y., Wu, J., Zhang, J., Sun, X., Zhao, D. (2021) Characterization of key aroma compounds in Tartary buckwheat (Fagopyrum tataricum Gaertn.) by means of sensory-directed flavor analysis. Journal of Agricultural and Food Chemistry, 69 (38), 11361–71. doi: 10.1021/acs.jafc.1c03708.
65. Sindarovska, Y. R., Guzyk, O. I., Yuzvenko, L. V., Demchenko, O. A., Didenko, L. F., Grynevych, O. I., Spivak, M. Y. 2014. Ribonuclease activity of buckwheat plant (Fagopyrum esculentum) cultivars with different sensitivities to buckwheat burn virus. The Ukrainian Biochemical Journal 86 (3):33–40. doi: 10.15407/ ubj86.03.033.
66. Singh, J. P., Kaur, A., Singh, B., Singh, N., Singh, B. (2019) Physicochemical evaluation of corn extrudates containing varying buckwheat flour levels prepared at various extrusion temperatures. Journal of Food Science and Technology, 56 (4), 2205–12. doi: 10.1007/ s13197-019-03703-y.
67. Singh, M., Malhotra, N., Sharma, K. (2020) Buckwheat (Fagopyrum sp.) genetic resources: What can they contribute towards nutritional security of changing world? Genetic Resources and Crop Evolution, 67 (7), 1639–58. doi: 10.1007/s10722-020-00961-0.
68. Sinkovič, L., Deželak, M., Kopinč, R., Meglič, V. (2022) Macro/microelements, nutrients and bioactive components in common and Tartary buckwheat (Fagopyrum spp.) grain and stone-milling fractions. LWT, 161, 113422. doi: 10.1016/j.lwt.2022.113422.
69. Skrabanja, V. and Kreft, I. (1998) Resistant starch formation following autoclaving of buckwheat (Fagopyrum esculentum Moench) groats. An in vitro study. Journal of Agricultural and Food Chemistry, 46 (5), 2020–3. doi: 10.1021/jf970756q.
70. Škrobot, D., Pezo, L., Tomić, J., Pestorić, M., Sakač, M., Mandić, A. (2022) Insights into sensory and hedonic perception of wholegrain buckwheat enriched pasta. LWT, 153, 112528. doi: 10.1016/j. lwt.2021.112528.
71. Small, E. (2017) Buckwheat – the world’s most biodiversity-friendly crop? Biodiversity, 18, (2-3), 108–23. doi: 10.1080/14888386.2017.1332529.
72. Sobhani, M. R., Rahmikhdoev, G., Mazaheri, D., Majidian, M. (2014) Influence of different sowing date and planting pattern and N rate on buckwheat yield and its quality. Australian Journal of Crop Science, 8 (10), 1402–14.
73. Southgate, A. N. N., Scheuer, P. M., Martelli, M. F., Menegon, L., Francisco, A. (2017) Quality properties of a gluten-free bread with buckwheat. Journal of Culinary Science & Technology, 15 (4), 339–48. doi: 10.1080/15428052.2017.1289134.
74. Starowicz, M., Lelujka, E., Ciska, E., Lamparski, G., Sawicki, T., Wronkowska, M. (2020) The application of Lamiaceae Lindl. promotes aroma compounds formation, sensory properties, and antioxidant activity of oat and buckwheat-based cookies. Molecules, 25 (23), 5626. doi: 10.3390/molecules25235626.
75. Stringer, D. M., Taylor, C. G., Appah, P., Blewett, H., Zahradka, P. (2013) Consumption of buckwheat modulates the post-prandial response of selected gastrointestinal satiety hormones in individuals with type 2 diabetes mellitus. Metabolism: Clinical and Experimental, 62 (7), 1021–31. doi: 10.1016/j.metabol.2013.01.021.
76. Sturza, A., Păucean, A., Chiș, M. S., Mureșan, V., Vodnar, D. C., Man, S. M., Urcan, A. C., Rusu, I. E., Fostoc, G., Muste. S., (2020) Influence of buckwheat and buckwheat sprouts flours on the nutritional and textural parameters of wheat buns. Applied Sciences, 10 (22), 7969. doi: 10.3390/app10227969.
77. Sun, X., Li, W., Hu, Y., Zhou, X., Ji, M., Yu, D., Fujita, K., Tatsumi, E., Luan, G. (2018) Comparison of pregelatinization methods on physicochemical, functional and structural properties of tartary buckwheat flour and noodle quality. Journal of Cereal Science, 80, 63–71. doi: 10.1016/j.jcs.2018.01.016.
78. Sun, Y., Zhou, W., Huang, Y. (2020) Encapsulation of tartary buckwheat flavonoids and application to yoghurt. Journal of Microencapsulation, 37 (6), 445–56. doi: 10.1080/02652048.2020.1781943.
79. Suzuki, T., Morishita, T., Mukasa, Y., Takigawa, S., Yokota, S., Ishiguro, K., Noda, T. (2014) Breeding of ‘Manten-Kirari’, a non-bitter and trace-rutinosidase variety of Tartary buckwheat (Fagopyrum tataricum Gaertn.). Breeding Science, 64 (4), 344–50. doi: 10.1270/ jsbbs.64.344.
80. Syzdykova, G., Zhumakayev, A., Makhanova, S., Tleppayeva, A., Zhanbyrshina, N., Safronova, N., Seidalina, K. (2016) Study of optimal sowing date and rate of buckwheat in the semiarid zone of Northern Kazakhstan. Journal of Engineering and Applied Sciences, 11 (14), 2998–3003. doi: 10.3923/jeasci.2016.2998.3003.
81. Temnikova, O. E., Rudenko, E. Y., Senchenko, O. V., Ruzyanova, A. A. (2021) Technology of functional bread using buckwheat flour. IOP Conference Series: Earth and Environmental Science, 640 (2), 022002. doi: 10.1088/1755-1315/640/2/022002.
82. Thakur, P., Kumar, K., Ahmed, N., Chauhan, D., Eain Hyder Rizvi, Q. U., Jan, S., Singh, T. P., Dhaliwal, H. S. (2021) Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth (Amaranthus hypochondriacus L.), quinoa (Chenopodium quinoa L.), and buckwheat (Fagopyrum esculentum L.). Current Research in Food Science, 4, 917–25. doi: 10.1016/j. crfs.2021.11.019.
83. Torbica, A., Hadnađev, M., Dapčević, T. (2010) Rheological, textural and sensory properties of gluten-free bread formulations based on rice and buckwheat flour. Food Hydrocolloids, 24 (6-7), 626–32. doi: 10.1016/j.foodhyd.2010.03.004.
84. Trotsenko, V. I., Klitsenko, A. V. (2016) Adaptyvnyi potentsial hrechky v umovakh pivnichno–skhidnoho Lisostepu Ukrainy. [Adaptive potential of buckwheat in the conditions of the north-eastern forest-steppe of Ukraine]. Visnyk Sumskoho NAU, seriia "Ahronomiia i biolohiia". Sumy, 9 (32), 192–196. [in Ukranian]
85. Tryhub, O. V., Kutsenko, O. M., Liashenko, V. V., Nohin, V. V. (2022) Vazhlyvist vyroshchuvannia hrechky yak unikalnoi y ekolohichno oriientovanoi kultury [The importance of growing buckwheat as a unique and ecologically oriented crop], Scientific Progress & Innovations, 1, 69–76 [in Ukrainian]. https://doi.org/10.31210/visnyk2022.01.08
86. Vetrani, C., Bozzetto, L., Giorgini, M., Cavagnuolo, L., Di Mattia, E., Cipriano, P., Mangione, A., Todisco, A., Inghilterra, G., Giacco, A. (2019) Fibre-enriched buckwheat pasta modifies blood glucose response compared to corn pasta in individuals with type 1 diabetes and celiac disease: Acute randomized controlled trial. Diabetes Research and Clinical Practice, 149, 156–62. doi: 10.1016/j.diabres.2019.02.013.
87. Wang, G., Chen, Q., Yang, Y., Duan, Y., Yang, Y. (2022) Exchanges of economic plants along the land silk road. BMC Plant Biology, 22 (1), 619. doi: 10.1186/s12870-022-04022-9.
88. Wang, J., Wu, Y., Han, M., Lei, X., Leng, J., Yang, Q., Yang, P., Gao, J. (2023) Effect of environment and variety on the physicochemical properties of Tartary buckwheat starch. Journal of the Science of Food and Agriculture, 103 (5), 2413–24. doi: 10.1002/jsfa.12446.
89. Wang, L., Wang, L., Wang, A., Qiu, J., Li, Z. (2021a) Effects of superheated steam on starch structure and physicochemical properties of buckwheat flour during storage. Journal of Cereal Science, 99, 103221. doi: 10.1016/j.jcs.2021.103221.
90. Wang, R., Li, M., Chen, S., Hui, Y., Tang, A., Wei, Y. (2019) Effects of flour dynamic viscosity on the quality properties of buckwheat noodles. Carbohydrate Polymers, 207, 815–23. doi: 10.1016/j.carbpol.2018.09.048.
91. Wang, R., Li, M., Wei, Y., Guo, B., Brennan, M., Brennan, C. S. (2021b) Quality differences between fresh and dried buckwheat noodles associated with water status and inner structure. Foods (Basel, Switzerland), 10 (1), 187. doi: 10.3390/foods10010187.
92. Wang, X., Fan, D., Zhang, T. (2017) Effects of hydrothermal processing on rutin retention and physicochemical properties of Tartary buckwheat enriched dough and Chinese steamed bread. International Journal of Food Science & Technology, 52 (10), 2180–90. doi: 10.1111/ ijfs.13497.
93. Wang, Z., Zhang, Z., Zhao, Z., Wieslander, G., Norbäck, D., Kreft, I. (2004) Purification and characterization of a 24 kDa protein from tartary buckwheat seeds. Bioscience, Biotechnology, and Biochemistry, 68 (7), 1409–13. doi: 10.1271/bbb.68.1409.
94. Wefers, D., and Bunzel, M. (2015) Characterization of dietary fiber polysaccharides from dehulled common buckwheat (Fagopyrum esculentum) seeds. Cereal Chemistry Journal, 92 (6), 598–603. doi: 10.1094/ CCHEM-03-15-0056-R.
95. Wronkowska, M., Jarmułowicz, A., Lamparski, G., Jeliński, T., Haros, C. M. (2020) Oat–buckwheat breads – technological quality, staling and sensory properties. Irish Journal of Agricultural and Food Research, 59 (1), 33–41. https://www.jstor.org/stable/27041754.
96. Wronkowska, M., Zieliński, H., Szmatowicz, B., Ostaszyk, A., Lamparski, G., Majkowska, A. (2019) Effect of roasted buckwheat flour and hull enrichment on the sensory qualities, acceptance and safety of innovative mixed rye/wheat and wheat bakery products. Journal of Food Processing and Preservation, 43 (8), e14025. doi: 10.1111/jfpp.14025.
97. Wu, W., Li, Z., Qin, F. & Qiu, J. (2021) Anti-diabetic effects of the soluble dietary fiber from tartary buckwheat bran in diabetic mice and their potential mechanisms. Food and Nutrition Research, 65, 4998. doi: 10.29219/fnr.v65.4998.
98. Wu, W., Wang, L., Qiu, J. & Li, Z. (2018) The analysis of fagopyritols from tartary buckwheat and their anti-diabetic effects in KK-Ay type 2 diabetic mice and HepG2 cells. Journal of Functional Foods, 50, 137–46. doi: 10.1016/j.jff.2018.09.032.
99. Xiao, Y., Li, K., Zhang, H., Li, Y., Han, L., Liu, H. & Wang, M. (2022) The profile of buckwheat tannins based on widely targeted metabolome analysis and pharmacokinetic study of ellagitannin metabolite urolithin A. LWT, 156, 113069. doi: 10.1016/j.lwt.2022. 113069.
100. Xu, Q., Wang, L., Li, W., Xing, Y., Zhang, P., Wang, Q., Li, H., Liu, H., Yang, H. & Liu, X. (2019) Scented Tartary buckwheat tea: Aroma components and antioxidant activity. Molecules, 24 (23), 4368. doi: 10.3390/molecules24234368.
101. Yang, F., Yu, S-y, Wang, Y., Wang, R-f & Jing, F. (2014) Prospective induction of peripheral neuropathy by the use of Tartarian Buckwheat. Journal of the Neurological Sciences, 347 (1-2), 155-158. doi: 10.1016/j.jns.2014.09.037.
102. Yao, Y.-F., Song, X.-Y., Xie, G., Tang, Y.-N., Wortley, A. H., Qin, F., Blackmore, S., Li, C.-S., & Wang, Y.-F. (2023) New insights into the origin of buckwheat cultivation in southwestern China from pol-len data. The New Phytologist, 237 (6), 2467–2477. doi: 10.1111/ nph.18659.
103. Yeşil, S., & Levent, H. (2022) The influence of fermented buckwheat, quinoa and amaranth flour on gluten-free bread quality. LWT, 160, 113301. doi: 10.1016/j.lwt.2022.113301.
104. Yuzvenko, L. V., Lozova, O., Kvasko, O., Sindarovska, Y., Didenko, L. F., Spivak, N. Y., Shevchuk, V., & Veisz, O. B. (2011) Properties of buckwheat burn virus. Paper read at Climate change: Challenges and opportunities in agriculture. AGRISAFE Final Conference, at Budapest, Hungary.
105. Zhang, H. W., Zhang, Y. H., Lu, M. J., Tong, W. J., & Cao, G. W. (2007) Comparison of hypertension, dyslipidaemia and hyperglycaemia between buckwheat seed-consuming and non-consuming Mongolian-Chinese populations in Inner Mongolia, China. Clinical and Experimental Pharmacology & Physiology, 34 (9), 838–44. doi: 10.1111/j.1440-1681.2007.04614.x.
106. Zhang, Q., & Xu, J.-G. (2017) Determining the geographical origin of common buckwheat from China by multivariate analysis based on mineral elements, amino acids and vitamins. Scientific Reports, 7 (1), 9696. doi: 10.1038/s41598-017-08808-y.
Published
2024-06-16
How to Cite
Mashchenko, O. A. (2024). EXPERIENCE AND PROSPECTS OF INCREASING THE PRODUCTIVITY POTENTIAL OF BUCKWHEAT IN THE CONDITIONS OF CLIMATE CHANGE. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 55(1), 109-118. https://doi.org/10.32782/agrobio.2024.1.15