INVOLVEMENT OF CELL WALL COMPONENTS IN PLANT PROTECTION REACTIONS AGAINST PATHOGENS

Keywords: cell wall, pathogen, plant immunity, cuticle, cellulose, pectin, hemicellulose, lignin, callose, suberin, fungi, bacteria, viruses, nematodes

Abstract

The review considers the involvement of cell wall components and its strengthening through cross-linking of proteins or deposition of metabolites (lignin, suberin, kalose), accumulation of toxic phenolic compounds, and protective PR proteins at the point of infection in the mechanisms of immunity to pathogens. The components of the cell wall are analyzed as the first obstacle that pathogens must overcome to colonize plant tissues. The involvement of the cuticle as a component of the cell wall in the barrier against phytopathogens and pests is characterized, and how most fungal pathogens can penetrate cutin and wax. The structure and role of cellulose microfibrils, pectin, hemicellulose, structural proteins, lignin, callose, and suberin of the cell wall in the mechanisms of immunity to pathogens are presented. The role of cell wall strengthening as a protective response of plants to pathogen infection is considered. It is outlined that during infection with a pathogen and its recognition by a plant on the basis of an immune response, the cell wall can be strengthened through cross-linking of proteins or deposition of metabolites (lignin, suberin, kalose), accumulation of toxic phenolic compounds, protective proteins PR at the point of infection. Successful protection at the cell wall level can stop the invasion of pathogens at an early stage of infection. Research results on various enzymes produced by pathogens to degrade the cell wall to facilitate plant infection and bypass the multi-level of protection method are summarized. Due to the possibility of pathogen infection of only dicotyledonous or monocotyledonous plants, the different composition of the cell wall structure of monocotyledonous and dicotyledonous plants and different enzymes for degradation of the polysaccharide material of the cell are separately outlined. It is considered how plants resist the invasion of biotrophic and hemibiotrophic pathogens by means of the apposition of “papillae”, which is a thickening of the cell wall that occurs early in the place of penetration of pathogenic organisms. It is shown how various pathogenic fungi (necrotrophs, biotrophs and hemibiotrophs), bacteria, viruses and nematodes bypass the protective mechanisms of cell wall components that are widely involved in plant immune responses to pathogens.

References

1. Ali, S., Tyagi, A., & Mir, Z.A. (2024) Plant Immunity: At the Crossroads of Pathogen Perception and Defense Response. Plants, 13(11), 1434. doi: 10.3390/plants13111434.
2. Al-Khayri, J.M., Rashmi, R., Toppo, V., Chole, P.B., Banadka, A., Sudheer, W.N., Nagella, P., Shehata, W.F., Al-Mssallem, M.Q., & Alessa, F.M. (2023) Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites, 13(6), 716. doi: 10.3390/metabo13060716.
3. Anderson, C.T., & Kieber, J.J. (2020) Dynamic Construction, Perception, and Remodeling of Plant Cell Walls. Annu Rev Plant Biol, 71, 39–69. doi: 10.1146/annurev-arplant-081519-035846.
4. Arya, G.C., Sarkar, S., Manasherova, E., Aharoni, A., & Cohen, H. (2021) The Plant Cuticle: An Ancient Guardian Barrier Set Against Long-Standing Rivals. Front. Plant Sci., 12, 663165. doi: 10.3389/fpls.2021.663165.
5. Ayaz, M., Li, C-H., & Ali, Q. (2023) Bacterial and Fungal Biocontrol Agents for Plant Disease Protection: Journey from Lab to Field, Current Status, Challenges, and Global Perspectives. Molecules, 28(18), 6735. doi: 10.3390/molecules28186735.
6. Balk, M., Sofia, P., Neffe, A.T., & Tirelli, N. (2023) Lignin, the Lignification Process, and Advanced, Lignin-Based Materials. Int. J. Mol. Sci., 24(14), 11668. doi: 10.3390/ijms241411668.
7. Bellincampi, D., Cervone, F., & Lionetti, V. (2014) Plant cell wall dynamics and wall-related susceptibility in plantpathogen interactions. Front Plant Sci, 5, 228. doi: 10.3389/fpls.2014.00228.
8. Benatti, A.L.T., & Polizeli, M.L.T.M. (2023) Lignocellulolytic Biocatalysts: The Main Players Involved in Multiple Biotechnological Processes for Biomass Valorization. Microorganisms, 11(1), 162. doi: 10.3390/microorganisms11010162.
9. Bennett, R.N., & Wallsgrove, R.M. (1994) Secondary metabolites in plant defence mechanisms. New Phytol, 127, 617–633.
10. Berhin, A., Nawrath, C., & Hachez, C. (2022) Subtle interplay between trichome development and cuticle formation in plants. New Phytol, 233(5), 2036–2046. doi: 10.1111/nph.17827.
11. Bou Daher, F., & Braybrook, S.A. (2015) How to let go: pectin and plant cell adhesion. Front. Plant Sci, 6, 523. doi: 10.3389/fpls.2015.00523.
12. Castilleux, R., Plancot, B., & Vicré, M. (2021) Extensin, an underestimated key component of cell wall defence? Ann Bot, 127(6), 709–713. doi: 10.1093/aob/mcab001.
13. Choquer, M., Fournier, E., Kunz, C., Levis, C., Pradier, J.M., Simon, A., &Viaud, M. (2007) Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett, 277(1), 1–10. doi: 10.1111/j.1574-6968.2007.00930.x.
14. Cosgrove, D.J. (2014) Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol, 22, 122–131. doi: 10.1016/j.pbi.2014.11.001.
15. Czolpinska, M., & Rurek, M. (2018) Plant Glycine-Rich Proteins in Stress Response: An Emerging, Still Prospective Story. Front. Plant Sci, 9, 302. doi: 10.3389/fpls.2018.00302.
16. Denness, L., McKenna, J.F., Segonzac, C., Wormit, A., Madhou, P., Bennett, M., Mansfield, J., Zipfel, C., & Hamann, T. (2011) Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol, 156(3), 1364–1374. doi: 10.1104/pp.111.175737.
17. Dixon, R.A., & Barros, J. (2019) Lignin biosynthesis: old roads revisited and new roads explored. Open Biol, 9(12), 190215. doi: 10.1098/rsob.190215.
18. Dos Santos, C., & Franco, O.L. (2023) Pathogenesis-Related Proteins (PRs) with Enzyme Activity Activating Plant Defense Responses. Plants (Basel), 12(11), 2226. doi: 10.3390/plants12112226.
19. Echevarría-Zomeño, S., Pérez-de-Luque, A., Jorrín, J., & Maldonado, A. M. (2006) Prehaustorial resistance to broomrape (Orobanche cumana) in sunflower (Helianthus annuus): cytochemical studies. Journal of Experimental Botany, 57, 4189–4200. doi: 10.1093/jxb/erl195.
20. Ellinger, D., & Voigt, C.A. (2014) Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann Bot, 114(6), 1349–1358. doi: 10.1093/aob/mcu120.
21. Faleva, A.V., Grishanovich, I.A., Ul’yanovskii, N.V., & Kosyakov, D.S. (2023) Application of 2D NMR Spectroscopy in Combination with Chemometric Tools for Classification of Natural Lignins. Int J Mol Sci, 24(15), 12403. doi: 10.3390/ijms241512403.
22. Feduraev, P., Riabova, A., & Skrypnik, L. (2021) Assessment of the Role of PAL in Lignin Accumulation in Wheat (Tríticum aestívum L.) at the Early Stage of Ontogenesis. Int J Mol Sci, 22(18), 9848. doi: 10.3390/ijms22189848.
23. Fernández-Aparicio, M., del Moral, L., & Muños, S. (2022) Genetic and physiological characterization of sunflower resistance provided by the wild-derived OrDeb2 gene against highly virulent races of Orobanche cumana Wallr. Theor Appl Genet, 135, 501–525. doi: 10.1007/s00122-021-03979-9.
24. Fich, E. A., Segerson, N. A., & Rose, J. K. (2016) The plant polyester cutin: biosynthesis, structure, and biological roles. Annu. Rev. Plant Biol, 67, 207–233. doi: 10.1146/annurev-arplant-043015-111929.
25. Fraser, C.M., & Chapple, C. (2011) The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book, 9, e0152. doi: 10.1199/tab.0152.
26. German, L., Yeshvekar, R., & Benitez-Alfonso, Y. (2023) Callose metabolism and the regulation of cell walls and plasmodesmata during plant mutualistic and pathogenic interactions. Plant Cell Environ, 46(2), 391–404. doi: 10.1111/pce.14510.
27. González-Lamothe, R., Mitchell, G., & Gattuso, M. (2009) Plant antimicrobial agents and their effects on plant and human pathogens. Int J Mol Sci, 10(8), 3400–3419. doi: 10.3390/ijms10083400.
28. Graça, J. (2015) Suberin: the biopolyester at the frontier of plants. Front. Chem, 3, 62. doi: 10.3389/fchem.2015.00062.
29. Grünhofer, P., Schreiber, L., & Kreszies, T. (2021) Suberin in Monocotyledonous Crop Plants: Structure and Function in Response to Abiotic Stresses. In: Mukherjee, S., Baluška, F. (eds) Rhizobiology: Molecular Physiology of Plant Roots. Signaling and Communication in Plants. Springer, Cham. doi: 10.1007/978-3-030-84985-6_19.
30. Guo, B., Huang, X., & Qi, J. (2022) Brittle culm 3, encoding a cellulose synthase subunit 5, is required for cell wall biosynthesis in barley (Hordeum vulgare L.). Front. Plant Sci, 13, 989406. doi: 10.3389/fpls.2022.989406.
31. Han, Z., & Schneiter, R. (2024) Dual functionality of pathogenesis-related proteins: defensive role in plants versus immunosuppressive role in pathogens. Front. Plant Sci, 15, 1368467. doi: 10.3389/fpls.2024.1368467.
32. Harholt, J., Suttangkakul, A., & Vibe Scheller, H. (2010) Biosynthesis of pectin. Plant Physiol, 153(2), 384-395. doi: 10.1104/pp.110.156588.
33. Hernández-Blanco, C., Feng, D.X., & Hu, J. (2007) Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell, 19(3), 890–903. doi: 10.1105/tpc.106.048058.
34. Holbein, J., Franke, R.B., & Marhavý, P. (2019) Root endodermal barrier system contributes to defence against plant-parasitic cyst and root-knot nematodes. Plant J, 100, 221–236. doi: 10.1111/tpj.14459.
35. Holub, P., Nezval, J., & Štroch, M. (2019) Induction of phenolic compounds by UV and PAR is modulated by leaf ontogeny and barley genotype. Plant Physiol Biochem, 134, 81–93. doi: 10.1016/j.plaphy.2018.08.012.
36. Huang, C., & Heinlein, M. (2022). Function of Plasmodesmata in the Interaction of Plants with Microbes and Viruses. In: Benitez-Alfonso, Y., Heinlein, M. (eds) Plasmodesmata. Methods in Molecular Biology, vol 2457. Humana, New York, NY. doi: 10.1007/978-1-0716-2132-5_2.
37. Isaacson, T., Kosma, D.K., & Matas, A.J. (2009) Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. Plant J, 60(2), 363–377. doi: 10.1111/j.1365-313X.2009.03969.x.
38. Jamet, E., Canut, H., Boudart, G., & Pont-Lezica, R.F. (2006) Cell wall proteins: a new insight through proteomics. Trends Plant Sci, 11(1), 33–39. doi: 10.1016/j.tplants.2005.11.006.
39. Kaur, S., Samota, M.K., & Choudhary, M. (2022) How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiol Mol Biol Plants, 28, 485–504. doi:10.1007/s12298-022-01146-y.
40. Kozieł, E., Otulak-Kozieł, K., & Bujarski, J.J. (2021) Plant Cell Wall as a Key Player During Resistant and Susceptible Plant-Virus Interactions. Front. Microbiol, 12, 656809. doi: 10.3389/fmicb.2021.656809.
41. Kubicek, C.P., Starr, T.L., & Glass, N.L. (2014) Plant cell wall-degrading enzymes and their secretion in plantpathogenic fungi. Annu Rev Phytopathol, 52, 427–451. doi: 10.1146/annurev-phyto-102313-045831.
42. Kubicek, C.P., Starr, T.L., & Glass, N.L. (2014) Plant cell wall-degrading enzymes and their secretion in plantpathogenicfungi. Annu Rev Phytopathol, 52, 427–451. doi: 10.1146/annurev-phyto-102313-045831.
43. Labrousse, P., Arnaud, M.C., Griveau, Y., Fer, A., & Thalouarn, P. (2004) Analysis of resistance criteria of sunflower recombined inbred lines against Orobanche cumana Wallr. Crop Protection, 23, 407–413. doi: 10.1016/j.cropro.2003.09.013.
44. Laluk, K., & Mengiste, T. (2010) Necrotroph attacks on plants: wanton destruction or covert extortion? Arabidopsis Book, 8, e0136. doi: 10.1199/tab.0136.
45. Leroch, M., Kleber, A., & Silva, E. (2013) Transcriptome profiling of Botrytis cinerea conidial germination reveals upregulation of infection-related genes during the prepenetration stage. Eukaryot Cell, 12, 614–626. doi: 10.1128/EC.00295-12.
46. Leslie, M.E., Rogers, S.W., & Heese, A. (2016) Increased callose deposition in plants lacking DYNAMINRELATED PROTEIN 2B is dependent upon POWDERY MILDEW RESISTANT 4. Plant Signal Behav, 11(11), e1244594. doi: 10.1080/15592324.2016.1244594.
47. Letousey, P., De Zélicourt, A., & Vieira Dos Santos, C. (2007) Molecular analysis of resistance mechanisms to Orobanche cumana in sunflower. Plant Pathol, 56, 536–546. doi:10.1111/j.1365-3059.2007.01575.x
48. Li, N., Lin, Z., & Yu, P. (2023) The multifarious role of callose and callose synthase in plant development and environment interactions. Front. Plant Sci, 14, 1183402. doi: 10.3389/fpls.2023.1183402.
49. Li, P., Lu, Y.J., Chen, H., & Day, B. (2022) The Lifecycle of the Plant Immune System. CRC Crit Rev Plant Sci, 39(1), 72–100. doi: 10.1080/07352689.2020.1757829.
50. Liu, J., Zhang, L., & Yan, D. (2021) Plasmodesmata-Involved Battle Against Pathogens and Potential Strategies for Strengthening Hosts. Front. Plant Sci, 12, 644870. doi: 10.3389/fpls.2021.644870.
51. Liu, Q., Luo, L., & Zheng, L. (2018) Lignins: Biosynthesis and biological functions in plants. Int. J. Mol. Sci, 19, 335. doi: 10.3390/ijms19020335.
52. Liu, S., Jiang, J., Ma, Z. (2022) The role of hydroxycinnamic acid amide pathway in plant immunity. Front. Plant Sci, 13, 922119. doi: 10.3389/fpls.2022.922119.
53. Lorrai, R., & Ferrari, S. (2021) Host Cell Wall Damage during Pathogen Infection: Mechanisms of Perception and Role in Plant-Pathogen Interactions. Plants, 10(2), 399. doi:10.3390/plants10020399.
54. Lüthje, S., & Martinez-Cortes, T. (2018) Membrane-Bound Class III Peroxidases: Unexpected Enzymes with Exciting Functions. Int J Mol Sci, 19(10), 2876. doi: 10.3390/ijms19102876.
55. Ma, Q-H. (2024) Lignin Biosynthesis and Its Diversified Roles in Disease Resistance. Genes, 15(3), 295. doi:10.3390/genes15030295.
56. Ma, Y., & Johnson, K. (2023) Arabinogalactan proteins – Multifunctional glycoproteins of the plant cell wall. Cell Surf, 9, 100102. doi: 10.1016/j.tcsw.2023.100102.
57. Ma, Z., Wang, L., & Zhao, M. (2020) iTRAQ proteomics reveals the regulatory response to Magnaporthe oryzae in durable resistant vs. susceptible rice genotypes. PLoS One, 15(1), e0227470. doi: 10.1371/journal.pone.0227470.
58. Malinovsky, F.G., Fangel, J.U., & Willats, W.G. (2014) The role of the cell wall in plant immunity. Front Plant Sci, 5, 178. doi: 10.3389/fpls.2014.00178.
59. Mapuranga, J., Zhang, N., Zhang, L., Chang, J., & Yang, W. (2022) Infection Strategies and Pathogenicity of Biotrophic Plant Fungal Pathogens. Front Microbiol, 13, 799396. doi: 10.3389/fmicb.2022.799396.
60. Maron, L. (2019) Breaking or Sneaking into the Fortress: The root endodermis is a defence wall against nematode infection. Plant J, 100, 219–220. doi: 10.1111/tpj.14540.
61. McNamara, J.T., Morgan, J.L., & Zimmer, J. (2015) A molecular description of cellulose biosynthesis. Annu Rev Biochem, 84, 895–921. doi: 10.1146/annurev-biochem-060614-033930.
62. Mishler-Elmore, J.W., & Zhou, Y. (2021) Extensins: Self-Assembly, Crosslinking, and the Role of Peroxidases. Front. Plant Sci, 12, 664738. doi: 10.3389/fpls.2021.664738.
63. Mishra, A., Behura, A., & Mawatwal, S. (2019) Structure-function and application of plant lectins in disease biology and immunity. Food Chem Toxicol, 134, 110827. doi: 10.1016/j.fct.2019.110827.
64. Mohnen, D. (2008). Pectin structure and biosynthesis. Curr. Opin. Plant Biol, 11, 266–277. doi:10.1016/j.pbi.2008.03.006.
65. Mousavi, A., & Hotta, Y. (2005) Glycine-rich proteins. Appl Biochem Biotechnol, 120, 169–174. doi:10.1385/ABAB:120:3:169.
66. Muche, M., Muasya, A.M., & Tsegay, B.A. (2022) Biology and resource acquisition of mistletoes, and the defense responses of host plants. Ecol Process, 11, 24. doi:10.1186/s13717-021-00355-9.
67. Mutuku, J.M., Cui, S., & Hori, C. (2019) The Structural Integrity of Lignin Is Crucial for Resistance against Striga hermonthica Parasitism in Rice. Plant Physiol, 179(4), 1796–1809. doi: 10.1104/pp.18.01133.
68. Nazarov, P.A., Baleev, D.N., & Ivanova, M.I. (2020) Infectious Plant Diseases: Etiology, Current Status, Problems and Prospects in Plant Protection. Acta Naturae, 12(3), 46–59. doi: 10.32607/actanaturae.11026.
69. Ngou, B.P.M, Ding, P., & Jones, J.D.G. (2022) Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell, 34(5), 1447–1478. doi: 10.1093/plcell/koac041.
70. Noreen, A., Hameed, A., & Shah, T.M. (2024) Field screening and identification of biochemical indices of pod borer (Helicoverpa armigera) resistance in chickpea mutants. Front Plant Sci, 15, 1335158. doi: 10.3389/fpls.2024.1335158.
71. Nunes da Silva, M., Solla, A., Sampedro, L., Zas, R., & Vasconcelos, M.W. (2015) Susceptibility to the pinewood nematode (PWN) of four pine species involved in potential range expansion across Europe. Tree Physiol, 35(9), 987–99. doi: 10.1093/treephys/tpv046.
72. Pauly, M., Gille, S., & Liu, L. (2013) Hemicellulose biosynthesis. Planta, 238(4), 627–642. doi: 10.1007/s00425-013-1921-1.
73. Pauly, M., & Keegstra, K. (2016) Biosynthesis of the Plant Cell Wall Matrix Polysaccharide Xyloglucan. Annu Rev Plant Biol, 67, 235–259. doi: 10.1146/annurev-arplant-043015-112222.
74. Pérez-de-Luque, A., González-Verdejo, C.I., & Lozano, M.D. (2006) Protein cross-linking, peroxidase and beta-1,3-endoglucanase involved in resistance of pea against Orobanche crenata. J Exp Bot, 57(6), 1461–1469. doi: 10.1093/jxb/erj127.
75. Pérez-de-luque, A., Rubiales, D., & Cubero, J.I. (2005) Interaction between Orobanche crenata and its Host Legumes: Unsuccessful Haustorial Penetration and Necrosis of the Developing Parasite. Annals of Botany, 95, 935–942. doi:10.1093/aob/mci105.
76. Pratyusha, S. (2022) Phenolic compounds in the plant development and defense: an overview. Plant stress physiology-perspectives in agriculture, 125–140. doi: 10.5772/intechopen.102873.
77. Rai, K.M., Balasubramanian, V.K., & Welker, C.M. (2015) Genome wide comprehensive analysis and web resource development on cell wall degrading enzymes from phyto-parasitic nematodes. BMC Plant Biol, 15, 187. doi: 10.1186/s12870-015-0576-4.
78. Rajasheker, G., Nagaraju, M., & Varghese, R.P. (2022) Identification and analysis of proline-rich proteins and hybrid proline-rich proteins super family genes from Sorghum bicolor and their expression patterns to abiotic stress and zinc stimuli. Front. Plant Sci, 13, 952732. doi: 10.3389/fpls.2022.952732.
79. Rani, P. U., & Yasur, J. (2009) Physiological changes in groundnut plants induced by pathogenic infection of Cercosporidium personatum Deighton. Allelopathy Journal, 23(2), 369-378.
80. Rashid, A. (2016). Defense responses of plant cell wall non-catalytic proteins against pathogens. Physiological and Molecular Plant Pathology, 94, 38–46. doi: 10.1016/j.pmpp.2016.03.009.
81. Riedel, M., Eichner, A., Meimberg, H., & Jetter, R. (2007) Chemical composition of epicuticular wax crystals on the slippery zone in pitchers of five Nepenthes species and hybrids. Planta, 225(6), 1517–1534. doi: 10.1007/s00425-006-0437-3.
82. Ringli, C., Keller, B., & Ryser, U. (2001) Glycine-rich proteins as structural components of plant cell walls. Cell Mol Life Sci, 58(10), 1430–1441. doi: 10.1007/PL00000786.
83. Robert, S., Bichet, A., & Grandjean, O. (2005) An Arabidopsis endo-1,4-beta-D-glucanase involved in cellulose synthesis undergoes regulated intracellular cycling. Plant Cell, 17(12), 3378–3389. doi: 10.1105/tpc.105.036228.
84. Ron, M., & Avni, A. (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell, 16(6), 1604–1615. doi: 10.1105/tpc.022475.
85. Rongpipi, S., Ye, D., Gomez, E.D., & Gomez, E.W. (2019) Progress and Opportunities in the Characterization of Cellulose – An Important Regulator of Cell Wall Growth and Mechanics. Front. Plant Sci, 9, 1894. doi: 10.3389/fpls.2018.01894.
86. San Clemente, H., Jamet, E. (2015) WallProtDB, a database resource for plant cell wall proteomics. Plant Methods, 11(1), 2. doi: 10.1186/s13007-015-0045-y.
87. Scheller, H.V., & Ulvskov, P. (2010) Hemicelluloses. Annu Rev Plant Biol, 61, 263–289. doi: 10.1146/annurevarplant-042809-112315.
88. Scheller, H.V., & Ulvskov, P. (2010) Hemicelluloses. Annu Rev Plant Biol, 61, 263-89. doi: 10.1146/annurevarplant-042809-112315.
89. Segado, P., Domínguez, E., & Heredia, A. (2016) Ultrastructure of the epidermal cell wall and cuticle of tomato fruit (Solanum lycopersicum L.) during development. Plant Physiol, 170, 935–946. doi:10.1104/pp.15.01725.
90. Sels, J., Mathys, J., & De Coninck, B.M. (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem, 46(11), 941–950. doi: 10.1016/j.plaphy.2008.06.011.
91. Serghini, K., Pérez de Luque, A., Castejón-Muñoz, M., García-Torres, L., & Jorrín, J.V. (2001) Sunflower (Helianthus annuus L.) response to broomrape (Orobanche cernua Loefl.) parasitism: induced synthesis and excretion of 7-hydroxylated simple coumarins. J Exp Bot, 52(364), 2227–2234. doi: 10.1093/jexbot/52.364.2227.
92. Serra, O., & Geldner, N. (2022) The making of suberin. New Phytol, 235(3), 848–866. doi: 10.1111/nph.18202.
93. Shin, Y., Chane, A., Jung, M., & Lee, Y. (2021) Recent Advances in Understanding the Roles of Pectin as an Active Participant in Plant Signaling Networks. Plants, 10(8), 1712. doi:10.3390/plants10081712.
94. Shrestha, S., Rahman, M.S., & Qin, W. (2021) New insights in pectinase production development and industrial applications. Appl Microbiol Biotechnol, 105, 9069–9087. doi:10.1007/s00253-021-11705-0.
95. Singla, P., Bhardwaj, R.D., & Kaur, S. (2019) Antioxidant potential of barley genotypes inoculated with five different pathotypes of Puccinia striiformis f. sp. hordei. Physiol Mol Biol Plants, 25, 145–157. doi:10.1007/s12298-018-0614-4.
96. Sterling, J.D., Quigley, H.F., Orellana, A., & Mohnen, D. (2001) The catalytic site of the pectin biosynthetic enzyme alpha-1,4-galacturonosyltransferase is located in the lumen of the Golgi. Plant Physiol, 127(1), 360–71. doi: 10.1104/pp.127.1.360.
97. Suryadi, H., Judono, J.J., & Putri, M.R. (2022) Biodelignification of lignocellulose using ligninolytic enzymes from white-rot fungi. Heliyon, 8(2), e08865. doi: 10.1016/j.heliyon.2022.e08865.
98. Swaminathan, S., Lionetti, V., & Zabotina, O.A. (2022) Plant Cell Wall Integrity Perturbations and Priming for Defense. Plants (Basel), 11(24), 3539. doi: 10.3390/plants11243539.
99. Tiku, A.R. (2018) Antimicrobial compounds and their role in plant defense. In Molecular Aspects of Plant-Pathogen Interaction; Singh, A., Singh, I.K., Eds.; Springer: Singapore, 283–307. doi: 10.1007/978-3-319-76887-8_63-1.
100. Tocci, N., Gaid, M., & Kaftan, F. (2018) Exodermis and endodermis are the sites of xanthone biosynthesis in Hypericum perforatum roots. New Phytol, 217, 1099–1112. doi: 10.1111/nph.14929.
101. Tundo, S., Mandalà, G., & Sella, L. (2022) Xylanase Inhibitors: Defense Players in Plant Immunity with Implications in Agro-Industrial Processing. Int J Mol Sci, 23(23), 14994. doi: 10.3390/ijms232314994.
102. Ušák, D., Haluška, S., & Pleskot, R. (2023) Callose synthesis at the center point of plant development-An evolutionary insight. Plant Physiol, 193(1), 54–69. doi: 10.1093/plphys/kiad274.
103. Vanholme, R., Demedts, B., Morreel, K., Ralph, J., & Boerjan, W. (2010) Lignin biosynthesis and structure. Plant Physiol, 153(3), 895–905. doi: 10.1104/pp.110.155119.
104. Vieira, P. S., Bonfim, I. M., &Araujo, E. A. (2021) Xyloglucan processing machinery in Xanthomonas pathogens and its role in the transcriptional activation of virulence factors. Nat. Commun, 12, 4049. doi: 10.1038/s41467-021-24277-4.
105. Vogel, J. (2008). Unique aspects of the grass cell wall. Curr. Opin. Plant Biol, 11, 301–307. doi:10.1016/j.pbi.2008.03.002.
106. Voigt, C.A. (2014) Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Front Plant Sci, 5, 168. doi: 10.3389/fpls.2014.00168.
107. Voragen, A.G.J., Coenen, GJ., & Verhoef, R.P. (2009) Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem, 20, 263–275. doi:10.1007/s11224-009-9442-z.
108. Wang, Y., Chantreau, M., Sibout, R., & Hawkins, S. (2013) Plant cell wall lignification and monolignol metabolism. Front. Plant Sci, 4, 220. doi: 10.3389/fpls.2013.00220.
109. Wang, Y., Li, X., Fan, B., Zhu, C., & Chen, Z. (2021) Regulation and Function of Defense-Related Callose Deposition in Plants. Int J Mol Sci, 22(5), 2393. doi: 10.3390/ijms22052393.
110. Wei, W., Xu, L., & Peng, H. (2022) A fungal extracellular effector inactivates plant polygalacturonase-inhibiting protein. Nat Commun, 13(1), 2213. doi: 10.1038/s41467-022-29788-2.
111. Weng, J.K., Akiyama, T., & Bonawitz, N.D. (2010) Convergent evolution of syringyl lignin biosynthesis via distinct pathways in the lycophyte Selaginella and flowering plants. Plant Cell, 22(4), 1033–1045. doi: 10.1105/tpc.109.073528.
112. Westrick, N.M., Smith, D.L., & Kabbage, M. (2021) Disarming the Host: Detoxification of Plant Defense Compounds During Fungal Necrotrophy. Front Plant Sci, 12, 651716. doi: 10.3389/fpls.2021.651716.
113. Wong, K. K. Y., & Saddler, J. N. (1992) Trichoderma Xylanases, Their Properties and Application. Critical Reviews in Biotechnology, 12(5–6), 413–435. doi:10.3109/07388559209114234.
114. Woolfson, K.N., Esfandiari, M., & Bernards, M.A. (2022) Suberin Biosynthesis, Assembly, and Regulation. Plants (Basel), 11(4), 555. doi: 10.3390/plants11040555.
115. Wu, S.W., Kumar, R., Iswanto, A.B.B., & Kim, J.Y. (2018) Callose balancing at plasmodesmata. J Exp Bot, 69(22), 5325–5339. doi: 10.1093/jxb/ery317.
116. Xiao, C., & Anderson, C.T. (2013) Roles of pectin in biomass yield and processing for biofuels. Front. Plant Sci, 4, 67. doi: 10.3389/fpls.2013.00067.
117. Xin, X.F., & He, S.Y. (2013) Pseudomonas syringae pv. tomato DC3000: A Model Pathogen for Probing Disease Susceptibility and Hormone Signaling in Plants. Annual Review of Phytopathology, 51, 473–498. doi: 10.1146/annurevphyto-082712-102321.
118. Xu, H., Giannetti, A., & Sugiyama, Y. (2022) Secondary cell wall patterning-connecting the dots, pits and helices. Open Biol, 12(5), 210208. doi: 10.1098/rsob.210208.
119. Yadav, V., Wang, Z., & Wei, C. (2020) Phenylpropanoid Pathway Engineering: An Emerging Approach towards Plant Defense. Pathogens, 9(4), 312. doi: 10.3390/pathogens9040312.
120. Yeats, T.H., & Rose, J.K. (2013) The formation and function of plant cuticles. Plant Physiol, 163(1), 5–20. doi: 10.1104/pp.113.222737.
121. Zacchino, S.A., Butassi, E., & Liberto, M.D. (2017) Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine, 37, 27–48. doi: 10.1016/j.phymed.2017.10.018.
122. Zhang, B., Gao, Y., Zhang, L., & Zhou, Y. (2021) The plant cell wall: Biosynthesis, construction, and functions. J Integr Plant Biol, 63(1), 251–272. doi: 10.1111/jipb.13055.
123. Zhang, W., Qin, W., Li, H., & Wu, A-M. (2021) Biosynthesis and Transport of Nucleotide Sugars for Plant Hemicellulose. Front. Plant Sci, 12, 723128. doi: 10.3389/fpls.2021.723128.
124. Zhang, X., Xue, Y., & Guan, Z. (2021) Structural insights into homotrimeric assembly of cellulose synthase CesA7 from Gossypium hirsutum. Plant Biotechnol J, 19(8), 1579–1587. doi: 10.1111/pbi.13571.
125. Zhou, Z., Wu, Y., & Yang, Y. (2015) An Arabidopsis Plasma Membrane Proton ATPase Modulates JA Signaling and Is Exploited by the Pseudomonas syringae Effector Protein AvrB for Stomatal Invasion. Plant Cell, 27(7), 2032–2041. doi: 10.1105/tpc.15.00466.
126. Zhu, L., Yang, Q., & Yu, X. (2022) Transcriptomic and Metabolomic Analyses Reveal a Potential Mechanism to Improve Soybean Resistance to Anthracnose. Front Plant Sci, 13, 850829. doi: 10.3389/fpls.2022.850829.
127. Ziv, C., Zhao, Z., Gao, Y.G., & Xia, Y. (2018) Multifunctional Roles of Plant Cuticle During Plant-Pathogen Interactions. Front Plant Sci, 9, 1088. doi: 10.3389/fpls.2018.01088.
Published
2025-03-21
How to Cite
Khablak, S. H., Spychak, V. M., & AbdullaievaY. А. (2025). INVOLVEMENT OF CELL WALL COMPONENTS IN PLANT PROTECTION REACTIONS AGAINST PATHOGENS. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 58(4), 130-145. https://doi.org/10.32782/agrobio.2024.4.18