Biological characteristics of sorghum crop

Keywords: sorghum, abiotic factors, stress resistance, domestication, adaptation.

Abstract

Nowdays global trends in climate change have drawn attention of the scientific community to crops with wide range of plasticity to abiotic environmental factors. Sorghum crop is a species with properties like these. Moreover it is a crop with great potential of yield and versatility of use. Grain sorghum belongs to the plants with ability to form the high level of productivity under various growing conditions, providing moisture, soil, and temperature regimes. Sorghum is the undisputed leader among field crops in its ability to withstand to prolonged droughts, high air and soil temperatures.

Aridization as the result of climate change causes in expanding the potential region for grain sorghum growing. In recent years, due to global climate change towards warming, there is an increase in the likelihood of droughts not only in the Steppe zone, but in the Forest-Steppe of Ukraine as well. This causes  the inclusion of drought- and heat-resistant species in the crop range. The main argument for more intensive involvement of grain sorghum in the region agrocenoses - its high ecological plasticity, which can be a full-fledged alternative to other spring grains (such as barley, corn, sunflower, millet) in unfavorable terms of hydrothermal coefficient of the  growing season. The basic technology elements of grain sorghum cultivation for ensuring high and stable yields in the southern regions of Ukraine have been studied in many researchers. However, the technological elements of grain sorghum cultivation in the North-Eastern region of Ukraine require detailed research to guarentee the high level of yields. The breeders established new modern varieties and hybrids of this crop, their reaction to the factors of the yield formation (sowing time and plant density, nutrients, etc.) were studied fragmentarily. The relevance of these problems, the insufficient level of their scientific substantiation, determined the scientific feasibility, practical significance of the study of the peculiarities of growing grain sorghum in the conditions of the North-Eastern region of Ukraine. Prospects for further research are based on the development of scientific principles for ensuring high productivity of grain sorghum with high quality indicators in the North-Eastern Forest-Steppe of Ukraine.

References

1. Bilozor, L. V. (2005). Osoblyvosti formuvannia rynku innovatsiinoi produktsii v ahrarnii sferi [Features of formation of the market of innovative production in agrarian spheres]. Ekonomika APK, 2, 106‒111 (in Ukrainian). doi: 10.31548/dopovidi2019.02.011
2. Shrestha, A., Cox, R., Wu, Y., Robles, O., Larocca de Souza, L., Wright, S. & Dahlberg, J. (2016). Moisture and Salt Tolerance of a Forage and Grain Sorghum Hybrid during Germination and Establishment. Journal of Crop Improvement, 30(6), 668‒683. doi: 10.1080/15427528.2016.1219895
3. Tari, I., Laskay, G., Takacs, Z., & Poor, P. (2013). Response of sorghum to abiotic stresses: A review. J. Agron. Crop. Sci., 199, 264–274. doi: 10.1111/jac.12017
4. Rakhmetov, D. B., Korablova, O. A., Stadnichuk, N. O., Andrushchenko, O. L., Kovtun-Vodyanytska, S. M., Revuno-va, L. G., & Bondarchuk, O. P. (2015). Kataloh roslyn viddilu novyh kultur [Catalogue of plants of New Culture Department]. Kyiv, Fitisotsiotsentr. (in Ukrainian). doi: 10.21498/2518-1017.16.3.2020.214927
5. Rooney, L. W., & Waniska, R. D. (2000). Sorghum food and industrial utilization. In: C. W. Smith, and R. A. Freder-iksen (eds), Sorghum: Origin, History, Technology, and Production, 689‒729. John Wiley & Sons Inc., New York. doi: 10.1080/17429140701722770
6. Berenji, J. & Dahlberg, J. (2004). Perspectives of Sorghum in Europe. Journal of Agronomy and Crop Science. 190. 332‒338. doi: 10.1111/j.1439-037X.2004.00102.x
7. Henley, E. C & Dahlberg, J. (2012). Sorghum: An Ancient Grain with Present-Day Benefits. Food technology, 66, 19‒19.
8. Muraya, M. M. (2014). Sorghum genetic diversity. Genetics, Genomics and Breeding of Sorghum; Wang, Y.-H., Upadhyaya, H. D., Kole, C., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 114–140.
9. Paterson, A. H. (2008). Genomics of sorghum. Int. J. Plant Genomics, 2008, article ID 362451. doi:10.1155/ 2008/36245
10. Awika, J. M. & Rooney, L. W. (2004). Sorghum phytochemicals and their potential impact on human health. Phyto-chemistry, 65, 1199‒1221. doi: 10.1016/j.phytochem.2004.04.001
11. Ciacci, C., Maiuri, L., Caporaso, N., Bucci, C., Giudice, L. D., Massardo, D. R., Pontieri, P., Fonzo, N. D., Bean, S. R., Ioerger, B. & Londei, M. (2007). Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 65, 1199‒1221.
12. Henley, E. C., Taylor, J. R. N. & Obukosia, S. (2010). The importance of dietary protein in human health: Combating protein deficiency in Sub-Saharan Africa through transgenic biofortified sorghum. Adv in Food and Nutr Res., 60, 21‒52.
13. Cherenkov, A. V., Shevchenko, M. S., Dziubetskyi, B. V., Cherchel, V. Yu., Bodenko, N. A., Yalanskyi, O. V. & Ben-da, R. V. (2011). Sorhovi kultury: tekhnolohiia, vykorystannia, hibrydy ta sorty [Sorghum crops: technology, use, hybrids and varieties]. Dnipropetrovsk, Royal Print (in Ukrainian).
14. Makarov, L. Kh. (2006) Sorhovi kultury [Sorghum crops]. Kherson, Ailant, 264. (in Ukrainian). doi: 10.47414/na.7.2019.204818
15. Fedorchuk, M. I., Kokovikhin, S. V. & Kalenska, S. M. (2017). Naukovo-teoretychni zasady ta praktychni aspekty formuvannia ekoloho-bezpechnykh tekhnolohii vyroshchuvannia ta pererobky sorho v stepovii zoni Ukrainy [Scientific and theoretical principles and practical aspects of the formation of environmentally friendly technologies for growing and processing sorghum in the steppe zone of Ukraine]. Kherson, 208 (in Ukrainian).
16. Ortiz, D., Hu, J., & Salas Fernandez, M. G. (2017). Genetic architecture of photosynthesis in Sorghum bicolor under non-stress and cold stress conditions. J. Exp. Bot., 68, 4545–4557. doi: 10.1186/s12870-015-0477-6
17. Dzhulai, N. P. (2012). Popovnennia rynku sortiv roslyn Ukrainy: sorho zvychaine (dvokolorove) (Sorghum bicolor (L.) Moench.). [Replenishment of the market of plant varieties of Ukraine: Sorghum bicolor (L.) Moench.] Plant Var. Stud. Prot., 3, 45–51 (in Ukrainian). doi: 10.21498/2518-1017.3(17).2012.58830
18. Adamenko, T. (2003). Pohoda i posivy. [Weather and crops]. Ahronom, 11, 6 (in Ukrainian).
19. Semenova, I. H. (2015). Prostorovo-chasovyi rozpodil posukh v Ukraini v umovakh maibutnoi zminy klimatu. [Spatio-temporal distribution of droughts in Ukraine in the conditions of future climate change]. Fizychna heohrafiia ta heomorfolohiia, 1, 144–150 (in Ukrainian).
20. Tesfaye, K. (2017). Genetic diversity study of sorghum (Sorghum bicolor (L.) Moenc) genotypes, Ethiopia. Acta Universitatis Sapientiae, Agriculture and Environment, 9(1), 44‒54. doi: 10.1515/ausae-2017-0004
21. Aniskina, Yu. V., Malinovskaya, E. V., Miczurova, V. S., Velishaeva, N. S., Kolobova, O. S.& Shilov, I. A. (2019). Is-sledovanie geneticheskogo raznoobraziya sorgo s ispol`zovaniem tekhnologii mul`tipleksnogo mikrosatellitnogo analiza. Bio-tekhnologiya i selekcziya rastenij [The study of the sorghum genetic diversity using the multiplex microsatellite analysis]. Plant Biotechnology and Breeding, 2(3), 20‒29 (in Russian). doi: 10.30901/2658-6266-2019-3
22. Snowden, J. D. (1936). Cultivated races of sorghum. London, Adlard and Sons.
23. Stapf, О. (1934). Gramineae, sorghum. D. Praln (ed.). Flora of Tropical Africa, 9. London, 104‒154.
24. Garber, E. D. (1950). Cytotaxonomic studies in the genus Sorghum. Berkeley: University of California Press. Uni-versity of California publications in botany, 23(6), 361.
25. De Wet, J.M.J. & Huckabay, J. P. (1967) The origin of Sorghum bicolor. II. Distribution and domestication. Evolu-tion., 21(4), 787‒802. doi: 10.1111/j.1558-5646.1967.tb03434
26. Harlan, J. R., & De Wet, J. M. J. (1972). A simplified classification of cultivated sorghum. Crop Science., 12(2), 172‒176. doi: 10.2135/cropsci1972.0011183x001200020005x
27. Wiersema, J. H. & Dahlberg, J. (2007). The nomenclature of Sorghum bicolor (L.) Moench (Gramineae). Taxon., 56(3), 941‒946. doi: 10.2307/25065876
28. Ohadi, S., Hodnett, G., Rooney, W. & Bagavathiannan, M. (2017). Gene flow and its consequences in Sorghum spp. Crit. Rev. Plant Sci. 36, 367–385. doi: 10.1080/07352689.2018.1446813
29. Fuller, D. Q. (2007). Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the Old World. Annals of Botany, 100, 903–924. doi: 10.1093/aob/mcm048
30. Harris, D. R., & Fuller, D. Q. (2014). Agriculture: Definition and overview. In C. Smith (Ed.), Encyclopedia of global archaeology, New York. Springer, 104–113.
31. Dillon, S. L., Shapter, F. M., Henry, R. J., Cordeiro, G., Izquierdo, L. & Lee, L. S. (2007). Domestication to crop im-provement: genetic resources for sorghum and saccharum (Andropogoneae). Ann Bot., 100(5), 975–989. doi: 10.1093/aob/mcm192
32. Kahlheber, S. & Neumann, K. (2007). The development of plant cultivation in semiarid West Africa. In T. Denham, J. Iriarte, & L. Vrydaghs (Eds.), Rethinking agriculture: Archaeological and ethnoarchaeological perspectives. Walnut Creek, Left Coast Press, 320–345.
33. Madella, M., García-Granero, J., Out, W., Ryan, P., & Usai, D. (2014). Microbotanical evidence of domestic cereals in Africa 7000 years ago. PLoS One, 9(10). doi: 10.1371/journal.pone.0110177
34. Mercuri, A. M., Fornaciari, R., Gallinaro, M., Vanin, S., & Di Lernia, S. (2018). Plant behaviour from human imprints and the cultivation of wild cereals in Holocene Sahara. Nature Plants, 4(2), 71–81. doi: 10.1038/s41477-017-0098-1
35. Allaby, R., G., Lucas, S.C., Leilani, M. O. & Fuller, D. Q. (2017). Geographic mosaics and changing rates of cereal domestication. Phil. Trans. R. Soc. B37220160429. doi: 10.1098/rstb.2016.0429
36. Winchell, F., Stevens, C., Murphy, C., Champion, L. & Fuller, D. Q. (2017). Evidence for sorghum domestication in Fourth Millennium BC eastern Sudan: Spikelet morphology from ceramic impressions of the Butana Group. Current Anthropol-ogy, 58(5). doi: 10.1086/693898.
37. Paterson, A., Bowers, J., Bruggmann, R., & Rokhsar, D. S. (2009). The Sorghum bicolor genome and the diversifi-cation of grasses. Nature, 457, 551–556. doi: 10.1038/nature07723
38. Harlan, R. J., de Wett, J. M. J., & Price, E. (1973). Comparative evolution of cereals. Evolution, 27(2), 311‒325. doi: 10.1111/j.1558-5646.1973.tb00676.x
39. Barich, B. (2016). The introduction of Neolithic resources to North Africa: A discussion in light of the Holocene re-search between Egypt and Libya. Quaternary International, 410, 198–216. doi:10.1016/j.quaint.2015.11.138
40. Clark, J., & Stemler, A. (1975). Early domestication of sorghum from Central Sudan. Nature, 254, 588–591. doi: 10.1038/254588a0
41. Fuller, D. Q. (2013). Earliest sorghum in Sudan [blog post]. February 2013. [Electronic resource]. Access mode: http://archaeobotanist.blogspot.co.uk
42. Neumann, K. (2003). The late emergence of agriculture in subSaharan Africa: Archaeobotanical evidence and eco-logical considerations. In K. Neumann, A. Butler, & S. Kahlheber (Eds.), Fuel, foods and fields: Progress in African archaeobot-any. Africa Praehistorica, 15, Köln: Heinrich-Barth Institute, 71–92.
43. Beldados, A., & Constantini, L. (2011). Sorghum exploitation at Kassala and its environs, north eastern Sudan in the second and first millennium B.C. Nyame Akuma, 75, 33–39.
44. Beldados, A., Manzo, A., Murphy, C., Stevens, C. J., & Fuller, D. Q. (2018). Evidence of sorghum cultivation and possible pearl millet in the second millennium BCE at Kassala, Eastern Sudan. In A. M. Mercuri, A. Hohn, & A. C. D’Andrea (Eds.). Plants and people, Progress in African archaeobotany. New York, Springer.
45. Fuller, D. Q. (2003). African crops in prehistoric South Asia: A critical review. In K. Neumann, A. Butler, & S. Kahl-heber (Eds.), Food, fuel, and fields: Progress in African archaeobotany. Cologne, Heinrich–Barth Institute, 239–271.
46. Fuller, D. Q., Stevens, C., Lucas, L., Murphy, C., & Qin, L. (2016). Entanglements and entrapment on the pathway toward domestication. In L. Der & F. Fernadini (Eds.), Archaeology of entanglement Walnut Creek: Left Coast Press, 151–172.
47. Stevens, C., & Fuller, D. Q. (2017). The spread of agriculture in Eastern Asia: Archaeological bases for hypothetical farmer/language dispersals. Language Dynamics and Change, 7. doi: 10.1163/22105832-00702001
48. Rowley-Conwy, P. A., Deakin, W. J., & Shaw, C. H. (1997). Ancient DNA from archaeological sorghum (Sorghum bi-color) from Qasr Ibrim, Nubia: implications for domestication and evolution and a review of archaeological evidence. Sahara, 9, 23‒36.
49. Allaby, R. (2010). Integrating the processes in the evolutionary system of domestication. Journal of Experimental Botany, 61, 935–944. doi: 10.1093/jxb/erp382
50. Fuller, D. Q., Qin, L., Zheng, Y., Zhao, Z., Chen, X., Hosoya, L., & Sun, G. (2009). The domestication process and domestication rate in rice: Spikelet bases from the Lower Yangtze. Science, 323, 1607–1610. doi: 10.1126/science.1166605
51. Meyer, R. & Purugganan, M. (2013). Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet, 14, 840–852. doi: 10.1038/nrg3605
52. Smith, O., Nicholson, W.V. & Kistler, L. (2019). A domestication history of dynamic adaptation and genomic deterio-ration in Sorghum. Nat. Plants, 5, 369–379. doi: 10.1038/s41477-019-0397-9
53. Abdulai, A. L., M. Kouressy, M. Vaksmann, F. Asch, M. Giese & Holger, B. (2012). Latitude and date of sowing in-fluences phenology of photoperiod-sensitive sorghums. J. Agric. Crop Sci., 198, 340–348. doi: 10.1111/j.1439-037X.2012.00523.x
54. Wolabu, T. W. & Million, T. (2016). Photoperiod response and floral transition in sorghum. Plant Signaling & Behav-ior, 11, 12. doi: 10.1080/15592324.2016.1261232
55. Yang, S., Murphy, R., Morishige, D., Klein, P. & Rooney, W. (2014). Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12. PLoS ONE.; 9:e105352. doi: 10.1371/journal.pone.0105352
56. Murphy, R., Klein, R. R., Morishige, D. T., Brady, J. A., Rooney, W. L., Miller, F. R., Dugas, D.V., Klein, P. E. & Mul-let, J. E. (2011). Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA,108, 16469‒16474. doi: 10.1073/pnas.1106212108
57. Wolabu, T. W., Zhang, F., Niu, L., Kalve, S., Bhatnagar-Mathur, P., Muszynski, M.G, & Tadege, M. (2016). Three FLOWERING LOCUS T-like genes function as potential florigens and mediate photoperiod response in sorghum. New Phytol, 210, 946‒959. doi: 10.1111/nph.13834
58. Teetor, V. H., Duclos, D. V., Wittenberg, E. T., Young, K. M., Chawhuaymak, J., Riley, M. R. & Ray, D. T. (2011). Ef-fects of planting date on sugar and ethanol yield of sweet sorghum grown in Arizona. Ind. Crops Prod., 34, 1293–1300. doi: 10.1016/j.indcrop.2010.09.010
59. Anda, A. & Pinter, L. (1994). Sorghum germination and development as influenced by soil temperature and water content. Agronomy Journal - AGRON J., 86. doi: 10.2134/agronj1994.00021962008600040008x
60. Yu, J. & Tuinstra, M. (2001). Genetic analysis of seedling growth under cold temperature stress in grain sorghum seed-lings. Crop Sci., 41, 1438–1443. doi: 10.2135/cropsci2001.4151438x
61. Prasad, P. V. Vara, Pisipati, S., Mutava, R., & Tuinstra, M. (2008). Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Science, 48, 1911–1917. doi: 10.2135/cropsci2008.01.0036
62. Prasad, P. V. V., Boote, K. & Allen, L. (2006). Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agricultural and Forest Meteorology, 139, 237‒251. doi: 10.1016/j.agrformet.2006.07.003
63. Nguyen, C., Singh, V., Oosterom, E., Chapman, S., Jordan, D., & Hammer, G. (2013). Genetic variability in high temperature effects on seed-set in sorghum. Functional Plant Biology, 40, 439. doi: 10.1071/FP12264
64. Djanaguiraman, M., Perumal, R., Jagadish, S.V.K., Ciampitti, I. A., Welti, R., & Prasad, P. V. V. (2018). Sensitivity of sorghum pollen and pistil to high-temperature stress. Plant Cell Environ., 41(5), 1065‒1082. doi: 10.1111/pce.13089
65. Prasad, P. V. Vara, Maduraimuthu, D., Jagadish, K., & Ciampitti, I. (2019). Drought and high temperature stress and traits associated with tolerance. doi: 10.2134/agronmonogr58.c11
66. Prasad, P. V. Vara, Maduraimuthu, D., Perumal, R., & Ciampitti, I. (2015). Impact of high temperature stress on flo-ret fertility and individual grain weight of grain sorghum: Sensitive stages and thresholds for temperature and duration. Fron-tiers in Plant Science, 6, 820. doi: 10.3389/fpls.2015.00820
67. Gill, P. K., Sharma, A. D., Singh, P., & Bhullar, S. S. (2003). Changes in germination, growth and soluble sugar con-tents of Sorghum bicolor (L.) Moench seeds under various abiotic stresses. Plant Growth Regul., 40, 157–162. doi: 10.1023/a:1024252222376
68. Almodares, A. & Mostafi Darany, S. M. (2006). Effects of planting date and time of nitrogen application on yield and sugar content of sweet sorghum. J. Environ. Biol., 27, 601–605.
69. Ercoli, L., Mariotti, M., Masoni, A. & Arduini, I. (2004). Growth responses of sorghum plants to chilling temperature and duration of exposure. Eur. J. Agron., 2, 93–103. doi: 10.1016/s1161-0301(03)00093-5
70. Burow, G., Burke, J. J., Xin, Z. & Franks, C. D. (2011). Genetic dissection of early-season cold tolerance in sorghum (Sorghum bicolor (L.) Moench). Mol. Breeding, 28, 391–402. doi: 10.1007/s11032-010-9491-4
71. Yan, K., Chen, P., Shao, H., Zhang, L. & Xu, G. (2011). Effects of short-term high temperature on photosynthesis and photosystem II performance in sorghum. J. Agron. Crop Sci., 197, 400–408. doi: 10.1111/j.1439-037X.2011.00469.x
72. Yan, K., Chen, P., Shao, H., Zhao, S., Zhang, L., Xu, G. & Yun, S. (2012). Responses of photosynthesis and photo-system II to higher temperature and salt stress in sorghum. J. Agron. Crop Sci., 198, 218–226. doi: 10.1111/j.1439-037X.2011.00498.x
73. Pavli, O. I., Ghikas, D. V., Katsiotis, A. & Skaracis, G. N. (2011). Differential expression of heat shock protein genes in sorghum (Sorghum bicolor L.) genotypes under heat stress. Austr.J. Crop Sci., 5, 511–515. doi: 10.1007/s13562-012-0156-8
74. Patan`e, C., Saita, A. & Sortino, O. (2013). Comparative effects of salt and water stress on seed germination and early embryo growth in two cultivars of sweet sorghum. Journal of Agronomy and Crop Science,199(1), 30‒37. doi: 10.1111/j.1439-037X.2012.00531.x
75. Mayaki, W. C., Stone, L. R. & Teare, I. D. (1976). Irrigated and non-irrigated soybean, corn and grain sorghum roots systems. Agron. J., 68, 532–534.
76. Ludlow, M. M., Santamaria, J. M. & Fukai, S. (1990). Contribution of osmotic adjustment to grain yield of Sorghum bicolor (L.) Moench under water-limited conditions. II. Post-anthesis water stress. Aust. J. Agric. Res., 41, 67–78. doi: 10.1071/ar9900067
77. Surwenshi, A., Chimmad, V. P., Jalageri, B. R., Kumar, V., Ganapathi, M. & Nakul, H. T. (2010). Characterization of sorghum genotypes for physiological parameters and yield under receding soil moisture conditions. Res. J. Agric. Sci.,1, 242–244.
78. Younis, M. E., El-Shahaby, O. A., Abo-Hamed, S. A. & Ibrahim, A. H. (2000). Effects of water stress on growth, pig-ments and 14CO2 assimilation in three sorghum cultivars. J. Agron. Crop Sci., 185, 73–82. doi: 10.1046/j.1439-037x.2000.00400.x
79. Almodares, A., Taheri, R. & Adeli, S. (2007). Inter-relationship between growth analysis and carbohydrate contents of sweet sorghum cultivars and lines. J. Environ. Biol., 28, 527–531.
80. Xie, T., Su, P. & Shan, L. (2010). Photosynthetic characteristics and water use efficiency of sweet sorghum under different watering regimes. Pak. J. Bot., 42, 3981–3994.
81. Neto, Oliveira C.F., Lobato, A., Gonçalves-Vidigal, C., Costa, R.C.L., Filho, B., Alves, G.A.R., Maia, W.J.D.M.E.S., Cruz, F., Neves, H. K. B., & Lopes, M. J. (2009). Carbon compounds and chlorophyll contents in sorghum submitted to water deficit during three growth stages. J. Food Agric. Environ., 7, 588–593.
82. Sonobe, K., Hattori, T., An, P., Tsuji, W., Eneji, E., Kobayashi, S., Kawamura, Y., Tanaka, K. & Inanaga, S. (2010). Effect of silicon application on sorghum root responses to water stress. J. Plant Nutr., 34, 71–82. doi: 10.1080/01904167.2011.531360
83. Sonobe, K., Hattori, T., An, P., Tsuji, W., Eneji, E., Tanaka, K. & Inanaga, S. (2009). Diurnal variations in photosyn-thesis, stomatal conductance and leaf water relation in sorghum grown with or without silicon under water stress. J. Plant Nutr., 32, 433–442. doi: 10.1080/01904160802660743
84. Akwasi A. Abunyewa, Ferguson, R. B., Wortmann, C. S. & Mason, S. C. (2017). Grain sorghum nitrogen use as af-fected by planting practice and nitrogen rate J. Soil Sci. Plant Nutr., 17(1). doi: 10.4067/S0718-95162017005000012
85. Amuyojegbe, B. J., Opabode, J. T. & Olayinka, A. (2007). Effect of organic and inorganic fertilizer on yield and chlo-rophyll content of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench). Afr. J. Biotechnol., 6, 1869–1873. doi: 10.5897/ajb2007.000-2278
86. Aune, J.B., Doumbia, M. & Berthe, A. (2007). Microfertilizing Sorghum and Pearl Millet in Mali: Agronomic, Econom-ic and Social Feasibility.Outlook on Agriculture., 36(3), 199‒203. doi: 10.5367/000000007781891504
87. Barbanti, L., Grigatti, M. & Ciavatta, C. (2011). Nitrogen release from a (15) N-labeled compost in a sorghum growth experiment. J. Plant Nutr. Soil Sci., 174, 240–248. doi: 10.1002/jpln.200900364
88. Barik, S., Roy, P. & Satakshi Basu. (2017). Effect of fertilizer nitrogen & potassium on difference cultivars of sweet Sorghum (Sorghum bicolor L. Moench) in North-24-Parganas, West Bengal. International Journal of Applied Agricultural Re-search., 12(2), 199‒210.
89. Samuel Saaka Jeduah Buah, Kombiok, James M. & Luke, N. Abatania (2012). Grain sorghum response to NPK fer-tilizer in the Guinea Savanna of Ghana, Journal of Crop Improvement, 26(1), 101‒115. doi: 10.1080/15427528.2011.616625
90. Addy, S., Niedziela, C. E. Jr & Reddy, M. P. (2010). Effect of nitrogen fertilization on stay-green and senescent sor-ghum hybrids in sand culture. J. Plant Nutr., 33, 185–199. doi: 10.1080/01904160903434253
91. Borrell, A. K., & Hammer, G. L. (2000). Nitrogen dynamics and physiological basis of stay-green in sorghum. Crop Sci., 40, 1295–1307. doi: 10.2135/cropsci2000.4051295x
92. Cechin, I. (2004). Photosynthesis and chlorophyll fluorescence in two hybrids of sorghum under different nitrogen and water regimes. Photosynthetica, 35, 233–240. doi: 10.1023/a:1006910823378
93. Cosentino, S. L., Mantineo, M. & Testa, G. (2012). Water and nitrogen balance of sweet sorghum (Sorghum biocol-or Moench (L) cv. Keller under semi-arid conditions. Industrial Crops and Products, 36, 329‒342. doi: 10.1016/j.indcrop.2011.10.028
94. Gebrelibanos, Gebremariam & Dereje, Assefa (2015). Nitrogen fertilization effect on grain sorghum (Sorghum bi-color L. Moench) yield, yield components and witchweed (Striga hermonthica (Del.) Benth) infestation in Northern Ethio-pia.International Journal of Agricultural Research, 10, 14‒23. doi: 10.3923/ijar.2015.14.23
95. Zhao, D., Reddy, K. R., Kakani, V. G. & Reddy, V. R. (2005). Nitrogen deficiency effects on plant growth, leaf photo-synthesis and hyperspectral reflectance properties of sorghum. Eur J Agron., 22, 391‒403. doi: 10.1016/j.eja.2004.06.005
96. Curtis A., Erickson, J. & Singh, M. (2015). Investigation and synthesis of sweet sorghum crop responses to nitrogen and potassium fertilization. Field Crops Research, 178, 1‒7. doi: 10.1016/j.fcr.2015.03.014
97. Abida, A., Mussarrat, F., Safdar, A., Ghulam, J. & Rehana, A. (2007). Growth, yield and nutrients uptake of sor-ghum in response to integrated phosphorus and potassium management Pak. J. Bot., 39(4), 1083‒1087.
98. Khorasgani, M. N., Shariatmadari, H. & Atarodi, B. (2009). Interrelation of inorganic phosphorus fractions and sorghum available phosphorus in calcareous soils of Southern Khora-san. Commun. Soil Sci. Plant Anal., 40, 2460–2473. doi: 10.1080/00103620903111343
99. Ramadan, B. S. H. (2003). Effect of nitrogen, phosphorus and potassium fertilization on growth, yield and quality of sweet sorghum Proc. 10 Conf. Agron. Suez Canal Univ. Fac. Environ. Agric. Sci. EL-Arish, Egypt.
100. Issa, P. (2012). Effect of fertilizer and micronutrient foliar application on sorghum yield. Annals of Biological Re-search, 3, 3998‒4001.
101. Ripley, B. S., Redfern, S. P. & Dames, J. (2004). Quantification of the photosynthetic performance of phosphorus-deficient Sorghum by means of chlorophyll-a fluorescence. S. Afr. J. Sci., 100, 615–618.
102. Choudhary, S. K., Mathur, A. K. & Singh, P. (2015). Effect of micronutrient fertilization and methods of application on yield and quality of sorghum (Sorghum bicolor) in subhumid southern plains zone. Research on Crops., 16(1), 59‒63. doi: 10.5958/2348-7542.2015.00008.x
103. Mikami, Y., Saito, A., Miwa, E. & Higuchi, K. (2011). Allocation of Fe and ferric chelate reductase activities in mes-ophyll cells of barley and sorghum under Fe-deficient conditions. Plant Physiol. Biochem., 49, 513–519. doi: 10.1016/j.plaphy.2011.01.009
104. Dakshinamurthy, K. M. & Rao, U. (2008). Effect of organically bound micronutrients on growth and yield of rice. Journal of Ecofriendlily Agriculture, 3, 86‒87.
Published
2020-10-26
How to Cite
Zhatova, H., & Kovalenko, M. (2020). Biological characteristics of sorghum crop. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 40(2), 14-22. https://doi.org/10.32782/agrobio.2020.2.2