ХАРАКТЕРИСТИКА АДАПТИВНИХ ОЗНАК У МІЖСОРТОВИХ ГІБРИДІВ ПШЕНИЦІ М’ЯКОЇ ОЗИМОЇ В УМОВАХ-ПІВНІЧНО-СХІДНОГО ЛІСОСТЕПУ
Abstract
In 2018–2019, the research field of Sumy National Agrarian University conducted a study on the formation of elements of crop structure, resistance to phytopathogens and others adaptive traits of interspecific hybrids of winter wheat. The research material was lines (offspring F4 and F5), created by inter-varietal crossing of winter wheat varieties of different ecological and genetic origin from the number entered in different years in the State Register of plant varieties suitable for distribution in Ukraine, in particular with 1AL/1RS and 1BL/1RS translocations and without introgressed components. According to the duration of the vegetation period from full germination to full earing, the studied samples were divided into two groups – medium-early and medium-ripe. The growing season averaged 218 days for F4 and 216 for F5. The lowest rate (214 days) was found in fifth-generation hybrids created with varieties that are carriers of 1BL/1RS translocation. The longest growing season is recorded in the same combinations, however - the fourth generation. In terms of winter hardiness, all groups of hybrid combinations were inferior to the Podolyanka standard variety, although they had a level close to it (5.37–5.96 on a 9-point scale). Hybrid offspring’s in the field were characterized by relatively satisfactory winter hardiness. Overwintered at the standard level with a score of 6 points and above 58.9 % (F4) and 64.3 % (F5) of the tested samples. There is a direct relationship between: maturity group → plant height (r = 0.95) → resistance to overwintering (r = 0.87). That is, the shorter the growing season of the genotype, the lower the height of plants and the score of overwintering plants. In our experiments, the correlation coefficient is close to + 1, which indicates a close rectilinear correlation (almost functional) between the group of maturity → plant height → winter hardiness. Resistance to leaf diseases exceeded the standard: to brown rust – 96.75 % of the studied offspring; before powdery mildew and septoria 77% were better than Podolyanka. In the studied genotypes, the yield varied from 225 to 891 g/m2. The average population value of the trait for F4 and F5 was 640 g/m2. This indicator indicates the adaptive optimum of crop yield, which is represented by newly created offspring in F4 and F5.
References
2. Bakumenko, O. M., Osmachko, O. M., & Vlasenko, V. A. (2019). Combinative ability of winter wheat cultivars Kryzhynka and Smuhlianka: monograph, Sumy: Mriia, 194 [Electronic resource] Access mode: http://repo.snau.edu.ua/handle/123456789/7298 (in Ukrainian).
3. Bidzinski, P., Ballini, E., Ducasse, A., Michel, C., Zuluga, P., Genga, A., Chiozzotto, R., & Morel, J.B. (2016). Transcriptional basis of droughtinduced susceptibility to the rice blast fungus Magnaporthe oryzae. Front Plant Sci, 7, 1558. doi: 10.3389/fpls. 2016.01558.
4. Ceccarelli, S., Grando, S., Maatougui, M., Michael, M., Slash, M., Haghparast, R., Rahmanian, M., Taheri, A., Al-Yassin, A., Benbelkacem, A., Labdi, M., Mimoun, H., & Nachit, M. (2010). Plant breeding and climate changes. J Agric Sci, 148, 627–637. doi: 10.1017/S0021859610000651.
5. Ceglar, A., Zampieri, M., Toreti, A., & Dentener, F. (2019). Observed northward migration of agro-climate zones in Europe will further accelerate under climate change, Earth’s Future, 7, 1088–1101. doi: 10.1029/2019EF001178.
6. Chakraborty, S. (2013). Migrate or evolve: options for plant pathogens under climate change. Glob Change Biol, 19, 1985–2000. doi: 10.1111/gcb.12205.
7. Сhapman, S. C., Chakraborty, S., Dreccer, M. F., & Howden, S. M. (2012). Plant adaptation to climate change – opportunities and priorities in breeding. Crop Pasture Sci, 6, 251–268. doi: 10.1071/ CP11303.
8. Dospehov, B. A. (1985). Metodika polevogo opyita, M.: Agropromizdat, 352. (in Russian).
9. Duveiller, E., Singh, R. P., & Nicol, J. M. (2007). The challenges of maintaining wheat productivity: pests, diseases, and potential epidemics. Euphytica, 157, 417–430. doi: 10.1007/ s10681-007-9380-z.
10. Gordinskaya, E.A., Krokhmal, A.V., Grabovets, A.I., Barulina, N.I., & Biryukova, O. V. (2020). Characteristics of the biological potential of winter triticale varieties. Scientific and production journal "Legumes and cereals", 4 (36), 158–164.(in Russian). doi: 10.24412/2309-348X-2021-2-158-164
11. Juroszek, P., & Tiedemann, A. (2011). Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathol, 60, 100–112. doi: 10.1111/j.1365-3059.2010.02410.x.
12. Kovalenko, I. M., Kandyba, N. M., Rozhkova, T. O., Kryuchko, L. V., Bakumenko, O. M., Kovalenko, V. M., Vereshchagin, I.V., & Danilchenko, О.М. (2020). Laboratory work in agronomy: a textbook, Sumy, 293. [Electronic resource]. Access mode: http://repo.snau.edu.ua/bitstream/123456789/7677/1/1.pdf (in Ukrainian).
13. Li, W., Deng, Y., Ning, Y., He, Z., & Wang, G.L. (2020). Exploiting broadspectrum disease resistance in crops: from molecular dissection to breeding. Annual Rev Plant Biol, 71, 575–603. doi: 10.1146/annurev-arplant-010720-022215.
14. Lobell, D.B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science 333, 616–620. doi: 10.1126/science.1204531.
15. Masalitin, P. V. (2004). Ahrokhimichnyi ta ekonomichnyi stan ornykh zemel Sumskoi oblasti. Naukovo-obgruntovana systema vedennia silskoho hospodarstva Sumskoi oblasti, Sumy : VAT «SOD», Kozatskyi val, 77–92 (in Ukrainian).
16. Metodyka Derzhavnoho vyprobuvannia sortiv roslyn na prydatnist do poshyrennia v Ukraini: zahalna chastyna. Okhorona prav na sorty roslyn : ofitsiinyi biul. / Hol. red. Volkodav, V. V., (2003). Alefa, Kyiv, 1(3), 106 (in Ukrainian).
17. Miedaner, T. (2018). Wo hat der Anbau seine Grenzen? [Maize – Where are the limits of cultivation? in German], Innovations-Magazin Mais, 3, 22–25.
18. Motsnyi, I.I., Narhan, T.P., Lyfenko, S.Ph. & Yerynyak, N.I. (2014). Involvement of introgression lines for winter bread wheat breeding, Bulletin of Kharkiv National Agrarian University. Series: Biology, 31, 1, 79–90 (in Ukrainian).
19. Motsniy, І.І., Molodchenkova, O.O., Smertenko, A.P., Mishchenko, L.T., Kryvenko, A.I. & Solomonov, R.V. (2021). Selection evaluation of introgressive lines of soft winter wheat with signs of resistance to phytopathogens. Plant Archives, 21, 486-498. Access mode: https://doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.076.
20. Naymushina, A. Yu., & Yaichkin, V. N. (2018). Vliyaniye sorta na urozhaynost' i kachestvo zerna yarovoy pshenitsy v usloviyakh Orenburgskogo Predural'ya [The influence of the variety on the yield and grain quality of spring wheat in the conditions of the Orenburg Cis-Urals]. Bulletin of the Orenburg State Agrarian University, 3(71), 45–48 (in Russian).
21. Osmachko, O. M., Bakumenko, O. M., & Vlasenko, V. A. (2020). Creation of bread winter wheat initional material of leaf diseases resistance in the conditions north-east Foreststeppe: Monograph, Sumy, 214.
22. Rudenko, M. I., Shitova, I. P., Korneychuk, V. A. (1977). Metodicheskie ukazaniya po izucheniyu mirovoy kolektsii pshenitsyi: Izdanie trete, pererabotannoe. L., 28 (in Russian).
23. Vlasenko, V. A., O. M., Osmachko, & O. M., Bakumenko, (2020). Methodical recommendations for the selection of wheat lines with group resistance to diseases that are carriers of wheat-rye translocations. Sumy National Agrarian University, Sumy, 154 (in Ukrainian).
24. Waqar, A., Khattak, S. H., Begum, S., Rehman, T., Shehzad, A., Ajmal, A., et al. (2018). Stripe rust: A 1688 review of the disease, Yr genes and its molecular markers. Sarhad J. Agric., 34, 188–201. doi: 10.17582/journal.sja/2018/34.1.188.201
25. Wang, H., Sun, S., Ge, W., Zhao, L., Hou, B., Wang, K., et al. (2020). Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368, eaba5435. doi: 10.1126/science.aba5435
26. Ward, T. J., Clear, R. M., Rooney, A. P., O’Donnell, K., Gaba, D., Patrick, S., et al. (2008). An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol., 45, 473–484. doi: 10.1016/j.fgb.2007.10.003].
27. Wulff, B. B. H., & Jones, J. D. G. (2020). Breeding a fungal gene into wheat. Science, 368, 822–823. doi: 10.1126/science.311.5769.1843b
28. Xu, X., Bai, G., Carver, B. F., Shaner, G. E., & Hunger, R. M. (2005). Molecular characterization of slow leaf-rusting resistance in wheat. Crop Sci. 45, 758–765. doi: 10.2135/cropsci2005.0758
29. Zhu, Z., Hao, Y., Mergoum, M., Bai, G., Humphreys, G., Cloutier, S., et al. (2019). Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada.Crop J., 7, 730–738. doi: 10.1016/j.cj.2019.06.003
30. Zhuchenko, A. A. (2010). Adaptive strategy for the development of agriculture in Russia in the XXI century (ecological and genetic foundations). Theory and Practice, Agrorus, Moscow, 1053. (in Russian).