FIELD CONTROL EFFECT OF 10 INSECTICIDES ON BEMISIA TABACI IN GREENHOUSE TOMATOES IN CHINA
Abstract
Bemisia tabaci (tobacco whitefly) is one of the most harmful invasive species in the world. It causes devastating damage to many crops during the invasion process and is an important pest worldwide. B. tabaci harms crops mainly by directly feeding on plant juice, affecting plant nutrient metabolism, causing plant leaves to appear yellow spots, yellowing and falling off in severe cases, and abnormal or irregular fruit structure. Adults and nymphs of B. tabaci can also secrete honeydew to contaminate plant organs and induce coal pollution. When the density is high, the leaves can turn black, which seriously affects the photosynthesis of plants and reduces the quality of crops. Another important way of B. tabaci is to spread plant viruses. Generally, after an outbreak of B. tabaci, the virus transmitted by it will occur. These viruses can cause plant leaf curling, plant dwarfing and fruit abortion, causing serious losses. A single foliar spray of 10 pesticides was used in order to screen out high-efficiency pesticides for controlling B. tabaci on tomato. Control experiments to carry out at the initial stage of the occurrence of B. tabaci, and a survey of the control effect was carried out 1, 3 and 7 days after the treatment. The results showed that the best effect on B. tabaci had on F (5 % Diprofen) variant 1 day after treatment. It was 41 %, which was significantly higher than other test reagents. None of the reagents showed good fast-acting effects. Option C (22,4 % Spirotetramat) had the best control effect on B. tabaci three days after spraying – 72 %. The worst effect (62 %) was when treated with pesticides in experimental variants I (50 % Flonicamid) and G (10 % Cyantraniliprole). Spraying the plants gives the best effect of neutralizing the pest and is 86 % on option J (20 % Mevirpirazone) after 7 days, which is much higher than other test reagents. Phytotoxicity for tomatoes was not detected in three field studies conducted from 13 to 20 October 2020. We can choose in the field control process of pest B. tabaci 20 % Mevirpirazone suspension concentrate, which can be used in combination with 22,4 % Spirotetramat suspension concentrate and 5 % Diprofen dispersible concentrate to achieve better control effect. This method of pesticides selection will provide effective protection of greenhouse vegetables from the damage impact of pest B. tabaci.
References
2. Wu Luofa (2017). Research review on economic hotspots of China’s vegetable industry. Journal of Jiangxi agriculture, 29 (04), 139–145. doi: 10.19386/j.cnki.jxnyxb.2017.04.29.
3. Hou Jun (2011). The current situation and characteristics of vegetable production in Shenyang. Liaoning Agricultural Sciences, (01), 64–66. doi: 0.3969/j.issn.1002-1728.2011.01.016.
4. Palumbo J.C., Horowitz A.R. & Prabhaker N. (2001). Insecticide control and resistance management for Benisia tabaci. Crop Protection, 20 (9), 739–765. doi: 10.1016/S0261-2194(01)00117-X.
5. Liu S.S., Colvin J. & De Barro P.J. (2012). Species concepts as applied to the whitefly Bemisia tabaci systematics: how many species are there? Journal of Integrative Agriculture, 11 (2): 176–186. doi: 10.1016/S2095-3119(12)60002-1.
6. De Barro P.J., Liu S.S., Boykin L.M. & Dinsdale A.B. (2011). Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56 (1), 1–19. doi: 10.1146/annurev-ento-112408-085504.
7. Chu Dong, Bi Yuping, Zhang Youjun, Lou Yunping (2005). Research progress on Bemisia tabaci biotype. Acta Ecologica Sinica, 25 (12): 3398–3405. doi: 10.3321/j.issn:1000-0933.2005.12.040.
8. Zhang Xiuxia, Mao Xiaohong, Gao Qiang, Bai Tingting & Zhang Ansheng (2019). Laboratory toxicity and field efficacy of three biological insecticides against Bemisia tabaci. Chinese agricultural bulletin, 35 (20), 99–103. doi: CNKI:SUN:ZNTB.0.2019-20-018.
9. Xu J., Lin K. K. & Liu S.S. (2011). Performance on different host plants of an alien and an indigenous Bemisia tabaci from China. Journal of Applied Entomology, 135 (10), 771–779. doi: 10.1111/j.1439-0418.2010.01581.x.
10. Wang Wenlong, Wang Shaoli, Han Guangjie, Du Yuzhou & Wang Jianjun (2016). Lack of cross-resistance between neonicotinoids and sulfoxaflor in field strains of Q-biotype of whitefly, Bemisia tabaci, from eastern China. Pesticide Biochemistry & Physiology, 136, 46. doi: 10.1016/j.pestbp.2016.08.005.
11. Pan Huipeng, Preisser E.L., Chu Dong, Wang Shaoli, Wu Qingjun, Carrière Yves, Zhou Xuguo & Zhang Youjun (2015). Insecticides promote viral outbreaks by altering herbivore competition. Ecological Application, (6), 1585–1595. doi: 10.1890/14-0752.1.
12. Li Caixin, Zhang Yongqiang, Zhang Bingbing, Wang Dan & Ding Wei (2015). Experiments on 6 insecticides to control Bemisia tabaci in tobacco fields. Phytosan, 28 (3), 41–42. doi: 10.13718/j.cnki.zwys.2015.03.025.
13. Tang Qiuling, Ma Kangsheng & Gao Xiwu (2016). The current status of vegetable aphids resistance and resistance management strategies. Plant Protection, 42 (06), 11–20. doi: 10.3969/j.issn.05291542.2016.06.002.
14. Wang Zhengyu, Yan Haifei, Yang Yihua & Wu Yidong (2010). Biotype and insecticide resistance status of the Whitefly Benisia tabaci from China. Pest Management Science, 66 (12), 1360–1366. doi: 10.1002/ps.2023.
15. Luo C., Jones C. M., Devine G., Zhang F., Denholm I. & Gorman K. (2010). Insecticide resistance in Benisia tabaci biotype Q (Homoptera: Aleyrodidae) from China. Crop Protection, 29 (5), 429–434. doi: 10.1016/j.cropro.2009.10.001.
16. Roditakis E., Roditakis Nikos E. & Tsagkarakou A. (2010). Insecticide resistance in Benisia tabaci (Homoptera: Aleyrodidae) populations from crete. Pest Management Science, 61 (6), 577–582. doi: 10.1002/ps.1029.
17. Erdogan C., Moores G.D., Gurkan M.O., Gorman K.J. & Denholm I. (2008). Insecticide resistance and biotype status of populations of the tobacco whitefly Benisia tabaci (Homoptera: Aleyrodidae) populations from Turkey. Crop Protection, 27 (3/4/5), 600–605. doi: 10.1016/j.cropro.2007.09.002.
18. Kang C.Y., Wu G. & Miyata T. (2006). Synergism of enzyme inhibitors and mechanisms of insecticide resistance in Benisia tabaci (Gennadius) (Hom., Aleyrodidae). Journal of Applied Entomology, 130 (6/7), 377–385. doi: 10.1111/j.1439-04 18.2006.01075.x.
19. Qin Yue, Zhang Zhongxin, Zhang Huichen, Guo Changjun, Wang Xiaojuan & Li Chao (2011). Study on the application of natural enemy insects in controlling greenhouse vegetable pests. Modern horticulture, (17), 49. doi: 10.3969/j. issn.1006-4958.2011.17.038.
20. Wang Wenlu (2012). Discussion on integrated control technology of Bemisia tabaci in greenhouse. Modern horticulture, (10), 158. doi: CNKI:SUN:JXYA.0.2012-10-136.
21. Castle S.J. (2005). Concentration and management of Bemisia tabaci in cantaloupe as a trap crop for cotton. Crop Prot., 12, 1038–1041. doi: 10.1016/j.cropro.2005.08.013.
22. Watanabe L., Bello V.H., De Marchi B.R., Pereira Sartori M.M., Agenor Pavan M. & Krause-Sakate R. (2018). Performance of Bemisia tabaci MEAM1 and Trialeurodes vaporariorum on tomato chlorosis virus (ToCV) infected plants. Journal of Applied Entomology, 142 (10), 1008–1015. doi: 10.1111/jen.12559.
23. Tuerxun, Wu Jing, Guo Wenchao, Guan Zhijian, Li Cuimei, Elken Maimaiti & Zhang Zhenyu (2011). Control effects of greenhouse whitefly, the main pests of vegetables in different chemical control facilities. Xinjiang Agricultural Sciences, 48 (02), 356–359. doi: CNKI:SUN:XJNX.0.2011-02-035.
24. Peng Li, Tao Xiaoxiang & Duan Ruihua (2016). Occurrence regularity and control technology of Bemisia tabaci. Modern agricultural science and technology, (24), 127–128. doi: 10.3969/j.issn.1007-5739.2016.24.074.
25. Zheng Huixin, Xie Wen, Wang Shaoli, Wu Qingjun, Zhou Xiaomao & Zhang Youjun (2017). Dynamic monitoring (B versus Q) and further resistance status of Q type Benisia tabaci in China. Crop Protection, 94, & 115–122. doi: 10.1016/j.cropro.2016.11.035.
26. Li Chuanming, He Jing, Gu Aixiang, Su Honghua, Wu Xiaoxia, Zhang Haibo, Xie Yamei, Wu Yahong & Zhou Fucai (2017). Effects of Bemisia tabaci feeding on nutrients and resistant substances of pepper varieties with different insect resistance. Chinese Journal of ecological agriculture, 25 (10), 1456–1462. doi: 10.13930/j.cnki.cjea.170372.
27. Chen Jincui (2017). Control effects of Seven Insecticides on Whitefly in greenhouse. Plant protection, 43 (4), 228–232. doi: 10.3969/j.issn.0529-1542.2017.04.041. 28. Li Yan, Zhao Wanxuan (2010). Occurrence characteristics and pollution free control technology of whitefly in greenhouse in Xiuyan area. Liaoning Agricultural Sciences, (03), 100. doi: CNKI:SUN:LNNY.0.2010-03-033.
29. Zong Jianping, Wei Shujuan, Wang Jingyang & Luo Wanchun. (2009). Distribution of imidacloprid in tomato plants after spraying and root irrigation and its control effect on Bemisia tabaci. Chinese Journal of Pesticide Science, (02), 219–224. doi: CNKI:SUN:NYXB.0.2009-02-019.
30. Fariña A.E., Rezende J.A.M., Wintermantel W.M. (2019). Expanding knowledge of the host range of tomato chlorosis virus and host plant preference of Bemisia tabaci MEAM1. Plant Disease, 103 (6), 1132–1137. doi: 10.1094/PDIS- 11-18-1941-RE.
31. Zou Chunhua, Li Lin, Dong Tingyan, Zhang Bowen & Hu Qiongbo (2014). Joint action of the entomopathogenic fungus Isaria fumosorosea and four chemical insecticides against the whitefly Bemisia tabaci. Biocontrol Science and Technology, 24 (3), 315–324. doi: 10.1080/09583157.20.
32. Wang Shaoli, Zhang Youjun, Yang Xin, Xie Wen & Wu Qingjun (2017). Resistance Monitoring for Eight Insecticides on the Sweetpotato Whitefly (Hemiptera: Aleyrodidae) in China. Journal of Economic Entomology, 110 (2), 660–666. doi: 10.1093/jee/tox040.
33. Liu Zhongliang, Zheng Jianli, Gao Junjie & Tia Changgeng (2017). Adversity shielding effect of imidacloprid on tomato and its control effect on whitefly in greenhouse. Northern Journal of Agriculture, 45 (01), 65–69. doi: 10.3969/j.issn.2096-1197.2017.01.13.