ASSESSMENT OF THE CONDITION OF FLAX DNA PREPARATIONS DURING LONG-TERM STORAGE

Keywords: flax, variety, sample, preparation, DNA, polymerase chain reaction, degradation, deionized water, TE-buffer, long-term storage method

Abstract

Flax (Linum usitatissimum L.) is an extremely ancient spinning crop. Selection has achieved significant results in creating varieties of spinning flax with a high fiber content in stems: 28–32%, and in some cases even 36–43%. At the same time, there remains a large number of unsolved problems in flax breeding, in particular, the phylogeny of the culture, the genetic control of the inheritance of economic and biological traits, as well as the nature of their inheritance. At the same time, there is a need to introduce the methods of molecular biology into the selection practice of flax, as they are universal because they work at the level of nucleic acids (DNA). Today, the methods of molecular biology are actively implemented in the practice of agronomic research and perform various functions: identification of GMOs and pathogenic organisms, creation of genetic maps of agricultural crops, marker selection of field crops, sequencing of genomes of valuable varieties and species for the purpose of more successful selection, and many others. The main problem associated with molecular research is the quality of DNA preparations used for the main stage of molecular research – polymerase chain reaction or PCR. The quality of DNA preparations is affected by many factors, including adherence to the nucleic acid isolation protocol, the presence of isolation buffer components in the preparation, the number of washes of the preparation, the overall cleanliness of the laboratory, and the duration and temperature of storage. Violation of the rules of DNA storage leads to the destruction or degradation of the molecule. There are long-term and short-term methods of DNA storage, which are used depending on the specifics of molecular research. The article examines the results of research into the quality of DNA preparations of Gladiator and Esman varieties of flax during long-term storage (90 days), at temperatures of +4 ºС and -20 ºС in deionized water and TE-buffer (TrisHCl EDTA). It has been found that DNA preparations mostly retain their stability under long-term storage and may therefore be suitable for PCR.

References

1. Bauer, T., Hammes, W. P., Haase, N. U. & Hertel, C. (2004). Effect of food components and processing parameters on DNA degradation in food. Environmental Biosafety Research, 3, 215–223.
2. Bitskinashvili, K., Gabriadze, I., Kutateladze, T., Vishnepolsky, B., Mikeladze, D. & Datukishvili, N. (2019). Influence of Heat Processing on DNA Degradation and PCR-Based Detection of Wild-Type and Transgenic Maize. Journal of Food Quality, 2019, 1–11. doi: 10.1155/2019/5657640
3. Bohn, P., Weisel, M. P., Wolfs, J. & Meier, M. A. R. (2022). Molecular data storage with zero synthetic effort and simple read‑out. Nature, 12(12), 1–8. doi: 10.1038/s41598-022-18108-9
4. Ceccherini, M. T., Pote´, J., Kay E.,1 Van, V. T., Mare´chal, J., Pietramellara, G., Nannipieri, P., Vogel, T. M. & Simonet P. (2003). Degradation and Transformability of DNA from Transgenic Leaves. Applied and environmental microbiology, 69(1), 673–678. doi: 10.1128/AEM.69.1.673–678.2003
5. Coudy, D., Colotte, M., Luis, A., Tuffet, S. & Bonnet, J. (2021). Long term conservation of DNA at ambient temperature. Implications for DNA data storage. PLoS ONE, 16(11), 1–14. doi: 10.1371/journal.pone.0259868
6. Dong Y., Sun, F., Ping, Z., Ouyang, Q. & Qian, L. (2020). DNA storage: research landscape and future prospects. National Science Review, 7, 1092–1107.
7. Godard, B., Schmidtke, J., Cassiman, J.-J. & Ayme, S. (2003). Data storage and DNA banking for biomedical research: informed consent, confidentiality, quality issues, ownership, return of benefits. A professional perspective. European Journal of Human Genetics, 11(2), 89–122. doi: 10.1038/sj.ejhg.5201114
8. Guo, D., Jiang, H., Yan, W., Yang, L., Ye, J., Wang, Y., Yan, Q., Chen, J., Gao, Y., Duan, L., Liu H. & Xie, L. (2020). Resequencing 200 Flax Cultivated Accessions Identifies Candidate Genes Related to Seed Size and Weight and Reveals Signatures of Artificial Selection. Frontiers in Plant Science, 1(10), 1–15. doi:10.3389/fpls.2019.01682.
9. Hao, Y., Li, Q., Fan, C. & Wang, F. (2021). Data Storage Based on DNA. Small Structures, 2, 1 – 13. doi: 10.1002/sstr.202000046
10. Ivanova, N. V. & Kuzmina, M. L. (2013). Protocols for dry DNA storage and shipment at room temperature. Molecular Ecology Resources, 13(5), 890–898 doi:10.1111/1755-0998.12134
11. Kawane, K., Motani, K. & Nagata, S. (2014). DNA Degradation and Its Defects. Cold Spring Harbor Laboratory Press. 6, 1–15.
12. Kim, Y.-T., Choi, E.-H. Son, B.-K., Seo, E.-H., Lee, E.-K., Ryu, J.-K., Ha, G.-W., Kim, J.-S., Kwon, M.-R., Nam, J.-H., Kim, Y.-J. & Lee, K.-R. (2011). Effects of Storage Buffer and Temperature on the Integrity of Human DNA. Korean Journal of Clinical Laboratory Science, 44(1), 24–30.
13. Kohll, A. X., Antkowiak, P. L., Chen, W. D., Nguyen, B. H., Stark, W. J., Ceze, L., Strauss K. & Grass, R. N. (2020). Stabilizing synthetic DNA for long-term data storage with earth alkaline salts. Chemical Communication, 56, 3613 – 3616. doi: 10.1039/d0cc00222d
14. Lee, S. B., Clabaugh, K. C., Silva, B., Odigie, K. O., Coble, M. D., Loreille, O., Scheible, M., Fourney, R. M., Stevens, J., Carmody, G. R., Parsons, T. J., Pozder, A., Eisenberg, A. J., Budowle, B., Ahmad, T., Miller, R. W. & Crouse, C. A. (2012). Assessing a novel room temperature DNA storage medium for forensic biological samples. Forensic Science International: Genetics, 6, 31–40. doi: 10.1016/j.fsigen.2011.01.008
15. Lohinov, M.I., Rosnovskyi, M.H. & Lohinov, A.M. (2014). Selektsiia lonu-dovhuntsia: istorychni aspekty rozvytku. Faktory eksperymentalnoi evoliutsii orhanizmiv, 14, 236–240. (in Ukrainian)
16. Lozano‑Peral, D., Rubio, L., Santos, I., Gaitán, M. J., Viguera, E. & Martín‑de‑las‑Heras, S. (2021). DNA degradation in human teeth exposed to thermal stress. Nature, 11(12), 1 – 9. doi: 10.1038/s41598-021-91505-8
17. Menchhoff, S. I., Solomon, A. D., Cox, J. O., Hytinen, M. E., Miller, M. T. & Cruz, T. D. (2022). Effects of storage time on DNA profiling success from archived latent fingerprint samples using an optimized workflow. Forensic Sciences Research, 7(1), 61 – 68. doi: 10.1080/20961790.2020.1792079
18. Miernyk, K. M., DeByle, C. D. & Rudolph K. M. (2017). Evaluation of two matrices for long-term, ambient storage of bacterial DNA. Biopreserv Biobank, 15(6), 529–534. doi: 10.1089/bio.2017.0040.
19. Molinuevo, R., Freije, A., Contreras, L., Sanz, J. R. & Gandarillas, A. (2020). The DNA damage response links human squamous proliferation with differentiation. Journal of Cell Biology, 219(11), 1–19. doi: 10.1083/jcb.202001063
20. Nguyen-Hieu, T., Aboudharam, G. & Drancourt, M. (2012). Heat degradation of eukaryotic and bacterial DNA: an experimental model for paleomicrobiology. BioMedCentral Research Notes, 5(528), 1–6.
21. Owens, C. B., & Szalanski, A. L. (2005). Filter Paper for Preservation, Storage, and Distribution of Insect and Pathogen DNA Samples. Journal Of Medical Entomology, 42(4), 709–711.
22. Rebecchi, L., Cesari, M., Altiero, T., Frigieri, A. & Guidetti, R. (2009). Survival and DNA degradation in anhydrobiotic tardigrades. The Journal of Experimental Biology, 212, 4033–4039. doi:10.1242/jeb.033266
23. Saito, T. & Doi, H. (2021). A Model and Simulation of the Influence of Temperature and Amplicon Length on Environmental DNA Degradation Rates: A Meta-Analysis Approach. Frontiers in Ecology and Evolution, 9, 1–8. doi: 10.3389/fevo.2021.623831
24. Smith, S. & Morin, P. A. (2005). Optimal Storage Conditions for Highly Dilute DNA Samples: A Role for Trehalose as a Preserving Agent. Journal оf Forensic Sciences, 50(5), 1–8.
25. Somiari, R. I., Adebiyi, E., Ukachukwu, L., Mba, I. I., Anthony, F. A., Ogundele, A. O., Onuaha, I., Brainard, M., Luber, S., Larson, C., Russell, S., Bharathan, N., & Somiari, S. B. (2011). STR Analysis of Human DNA Samples After Dry-State Ambient Temperature Storage in GenPlates. The Open Forensic Science Journal, 4, 30–35.
26. Soniat, T. J., Sihaloho, H. F., Stevens, R. D., Little, T. D., Phillips, C. D. & Bradley, R. D. (2021). Temporal-dependent effects of DNA degradation on frozen tissues archived at − 80°C. Journal of Mammalogy, 102(2), 375–383.
27. Soto-Cerda, B.J., Diederichsen, Axel., Ragupathy, R. & Cloutier, S. (2013). Genetic characterization of a core collection of flax (Linum usitatissimum L.) suitable for association mapping studies and evidence of divergent selection between fiber and linseed types. BioMedCentral Plant Biology, 13(78). 1–15.
28. Tan, X., Ge, L., Zhang, T. & Lu, Z. (2021). Preservation of DNA for data storage. Russian Chemical Reviews, 90(2), 280–291. doi: 10.1070/RCR4994
29. Villarrubia, C. W. N., Tumas, K. C., Chauhan, R., MacDonald, T., Dattelbaum, A. M., Omberg, K. & Gupta, G. (2022). Long-term stabilization of DNA at room temperature using a one-step microwave assisted process. Emergent Materials, 5, 307–314. doi: 10.1007/s42247-021-00208-3
30. Wang, F., Wang, L., Briggs, C., Sicinska, E., Gaston, S. M., Mamon, H., Kulke, M. H., Zamponi, R., Loda, M., Maher, E., Ogino, S., Fuchs, C. S., Li, J., Hader, C. & Makrigiorgos, G. M. (2007). DNA Degradation Test Predicts Success in Whole-Genome Amplification from Diverse Clinical Samples. Journal of Molecular Diagnostics, 9(4), 441 – 451. doi: 10.2353/jmoldx.2007.070004
31. Wu, J., Cunanan, J., Kim, L., Kulatunga, T., Huang, C. & Anekella, B. (2009). Stability of Genomic DNA at Various Storage Conditions. SeraCare Life Sciences, 1, 1–11.
32. Xu, Y., Ren, X. Y., Wang, H. B., Wang, M. & Li, G. H. (2018). Evaluation of DNA degradation and establishment of a degradation analysis model for Lepidoptera specimens. BioTechniques, 56(5), 138–147.
Published
2022-12-04
How to Cite
Vereshchahin, I. V., OnychkoV. І., & Kandyba, N. M. (2022). ASSESSMENT OF THE CONDITION OF FLAX DNA PREPARATIONS DURING LONG-TERM STORAGE. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 48(2), 31-35. https://doi.org/10.32845/agrobio.2022.2.5