DEPENDENCE OF BIOMASS YIELD OF GIANT MISCANTNHUS ON QUANTITATIVE INDICATORS OF PLANTS WHEN GROWN WITH LEGUMES

Keywords: giant miscanthus, legumes, biometric parameters of plants, biomass, yield, correlation dependencies

Abstract

In the article the peculiarities of formation of yield of giant miscanthus depending on quantitative indicators of plant phytocenosis on the basis of ecologization of technology of cultivation of culture are determined. The research was conducted in the central part of the Forest-Steppe using the methodological recommendations of Ukrainian and foreign authors. The experiment combined the study of the following factors: factor A - year (2016–2021), factor B - methods of growing giant miscanthus: variant 1 - single-species plantations of miscanthus (control), variant 2 - growing miscanthus together with perennial lupine (Lupinus perennis L. ), variant 3 - cultivation of miscanthus together with sickle alfalfa (Medicago falcata L.), variant 4 - cultivation of miscanthus together with red clover (Trifolium pratense L.). Quantitative indicators of plants were determined according to the approved methodology, and biomass yield - by weight method. Relationships between indicators were established on the basis of correlation and regression analysis. According to the results of the research, it was found that the quantitative indicators of giant miscanthus plants, depending on the methods of growing the crop, had a significant variation. It was found that the yield of dry biomass of giant miscanthus depends on the method of cultivation of the crop and has a clear trend to an annual increase: from 6.7 t/ha - in the first year, to 18.6 t/ha - in the fourth year. The highest yield of dry biomass during the years of research (13.7 t/ha) was obtained on the variants of joint cultivation with lupine, significantly less - when growing the crop with alfalfa and clover. The increase in the yield of giant miscanthus on the variants of joint cultivation with lupine averaged 1.2 t/ha. Biomass yield with clover and alfalfa, compared to the control, was 0.5 and 0.4 t/ha, respectively. Studies have shown a significant impact of quantitative indicators: by the correlation coefficient (r ˃ 0.7) and regression equations on the yield of miscanthus biomass. Correlation dependencies indicate that different methods of growing Miscanthus giganteus have an impact on the formation of biometric parameters and their relationship with biomass yield. It is established that in single-species plantations the highest biomass yield of Miscanthus giganteus is formed due to the height and density of the stem (r ˃ 0.7), less influence have the length of the leaf and their number (r ˃ 0.31–0.69).

References

1. Dekovets, V. O., Kulyk, M. I. & Halytska M. A. (2021) Biolohizatsiia tekhnolohii vyroshchuvannia miskantusu hihantskoho na biopalyvo [Biologization of technology of growing giant miscanthus for biofuel]. Ahrarni innovatsii, 10, 23–28. (in Ukrainian) doi: 10.32848/agrar.innov.2021.10.4
2. Dekovets, V.O. (2019) Miskantus v Ukraini: kolektyvna monohrafiia [Miscanthus in Ukraine]. Monograph. TOV TsP «Komprint» K. : 256 (in Ukrainian).
3. Dekovets, V.O., Kulyk, M.I. & Syplyvaia N.O. (2021) Osobenosty formyrovanyia urozhainosty byomassы myskantusa hyhanskoho pry sovmestnom vurashchyvanyy s bobovumy kulturamy [Peculiarities of yield formation of biomass of Miscanthus giganteus when growing together with leguminous crops]. Ştiinţa agricolă, (2), 71–78. doi: 10.5281/zenodo.5834616
4. Dospekhov, B. A. (1985) Metodyka polevoho oputa. [Field experiment methodology]. Kolos Moskva. 416. (in Russian).
5. Halytska, M. A., Pysarenko, P. V. & Kulyk M. I. (2018) Humifikatsiino-mineralizatsiini protsesy yak pokaznyk akumuliatsii karbonu v gruntakh [Humification-mineralization processes as an indicator of carbon accumulation in soils]. Tavriiskyi naukovyi visnyk, 102, 130–136 (in Ukrainian).
6. Humentyk, M. Ya. (2019) Osoblyvosti tekhnolohii zmishanoho vyroshchuvannia bioenerhetychnykh zlakovykh kultur dlia vyrobnytstva biopalyva [Features of the technology of mixed cultivation of bioenergy cereals for biofuel production]. Bioenerhetyka, 1(13), 16–18. doi: 10.47414/be.1.2019.229279 (in Ukrainian)
7. Humentyk, M. Ya., Kvak, V. M. & Zamoiskyi O. I. (2015) Vplyv elementiv mekhanizovanoi tekhnolohii vyroshchuvannia na produktyvnist biomasy miskantusu [Influence of elements of mechanized cultivation technology on the productivity of miscanthus biomass]. Visnyk Dnipropetrovskoho derzhavnoho ahrarno-ekonomichnoho universytetu, 4, 50–54 (in Ukrainian).
8. Kalinichenko, А., Kalinichenko, О. & Kulyk М. (2017) Assessment of available potential of agro-biomass and energy crops phytomass for biofuel production in Ukraine. Odnawialne źródła energii: teoria i praktyka. Monograph. Uniwersytet Opolski, Opole, Kijów, ІІ, 163–179.
9. Kharytonov, M. M. & Babenko, M. H. (2018) Prydatnist riznykh edafichnykh konstruktsii modelei tekhnozemiv dlia vyroshchuvannia Miscanthus × giganteus. Ratsionalne vykorystannia resursi v v umovakh ekolohichno stabilnykh terytorii: kolektyvna monohrafiia [Suitability of different edaphic constructions of technozem models for growing Miscanthus × giganteus. Rational use of resources in ecologically stable areas]. P. , TOV NVP «Ukrpromtorhservis», 106–113. (in Ukrainian).
10. Khivrych, O. B., Kurylo, V. L. & Kvak V. M. (2011) Enerhetychni roslyny, yak syrovyna dlia biopalyva [Energy plants as raw materials for biofuels]. Propozytsiia, (6), 68 (in Ukrainian).
11. Kulyk, M. I., Kurylo, V. L., Kalіnichenko, О. V. & Galytska, M. А. (2019) Plant energy resources : agroecological, economic and energy aspects : Monograph. Astraya Poltava, 119.
12. Kulyk, M. I. & Padalka, V. V. (2020) Rozvytok bioenerhetyky na osnovi roslynnoho enerhetychnoho resursu (na prykladi Poltavskoi oblasti). Upravlinnia stratehiiamy vyperedzhaiuchoho innovatsiinoho rozvytku: Monohrafiia [Development of bioenergy on the basis of plant energy resource (on the example of Poltava region). Management of strategies of advanced innovative development: Monograph]. Sumy : Trytoriia, 109–118 (in Ukrainian).
13. Kulyk, Maksym, Kalinichenko, O. & Dekovetz, V. (2020) Efficiency of energy crops cultivation for business development in Ukraine. Organization and management in the services’ sphere on selected examples. Editors: Tetyana Nestorenko, Tadeusz Pokusa. Monograph. Opole: The Academy of Management and Administration : Opole, Poland, 36–45.
14. Kulyk, Maksym, Shokalo, N. & Dinets, O. (2019). Morphometric indices of plants, biological peculiarities and productivity of industrial energy crops. Development of modern science: the experience of European countries and prospects for Ukraine: monograph / edited by authors. 3rd ed. Riga, Latvia: «Baltija Publishing», 411–431. doi: 10.30525/978-9934-571-78-7
15. Kurylo, V. L, Hanzhenko, O. M., Humentyk, M. Ya, Kvak, V. M., Zamoiskyi, O. I. & Zykov, P. Yu. (2012) Metodychni rekomendatsii z provedennia peredsadylnoho obrobitku gruntu i sadinnia ryzomiv miskantusu [Guidelines for pre-planting tillage and planting of miscanthus rhizomes]. IBKiTsB NAAN, 15 (in Ukrainian).
16. Kurylo, V. L., Hanzhenko, O. M. & Humentyk, M. Ya. (2016) Metodychni rekomendatsii z tekhnolohii vyroshchuvannia i pererobliannia miskantusu hihantskoho [Methodical recommendations on the technology of cultivation and processing of giant miscanthus]. Kyiv: Komprynt, 40 (in Ukrainian).
17. Kurylo, V. L., Humentyk, M. Ya. & Kvak, V. M. (2010) Miskantus – perspektyvna enerhetychna kultura lia vyrobnytstva biopalyva [Miscanthus is a promising energy crop for biofuel production]. Ahrobiolohiia. 4(80), 62–66 (in Ukrainian).
18. Pryshliak, N. V. (2021) Potentsiini mozhlyvosti vyroshchuvannia bioenerhetychnoi syrovyny na vyrobnytstvo tverdoho biopalyva [Potential opportunities for growing bioenergy raw materials for the production of solid biofuels]. Ahrosvit, (1–2), 33–45 doi 10.32702/2306&6792.2021.1-2.33 (in Ukrainian).
19. Pysarenko, P. V., Kurylo, V. L. & Kulyk, M. I. (2017) Ahrobiomasa ta fitomasa enerhetychnykh kultur dlia vyrobnytstva biopalyva [Agrobiomass and phytomass of energy crops for biofuel production]. Rozrobka ta vdoskonalennia enerhetychnykh system z urakhuvanniam naiavnoho potentsialu alternatyvnykh dzherel enerhii. kolektyvna monohrafiia. TOV NVP «Ukrpromtorhservis», 258–266 (in Ukrainian).
20. Rakhmetov, D. B., Kalenska, S. M. & Fedorchuk, M. I. et al. (2017) Metodychni rekomendatsii z optymizatsii tekhnolohii vyroshchuvannia miskantusu v riznykh hruntovo-klimatychnykh zonakh Ukrainy [Guidelines for optimization of miscanthus cultivation technology in different soil and climatic zones of Ukrain]. Vydavnychyi tsentr «Kolos», DVNZ «Khersonskyi derzhavnyi ahrarnyi universytet», 22. (in Ukrainian)
21. Roik, M. V., Hanzhenko, O. M. & Tymoshchuk, V. L. (2015) Kontseptsiia vyrobnytstva i vykorystannia tverdykh vydiv biopalyva v Ukraini [Concept of production and use of solid biofuels in Ukraine]. Bioenerhetyka, (1), 5–8 (in Ukrainian).
22. Taranenko A., Kulyk M., Galytska M., Taranenko S. (2019) Effect of cultivation technology on switchgrass (Panicum virgatum L.) productivity in marginal lands in Ukraine. Acta Agrobot, 72 (3), 1786. doi: 10.5586/aa.1786 (in Ukrainian)
23. Zinchenko, V. O., Roik, M. V. & Rakhmetov, D. B. (2012) Metodyka provedennia ekspertyzy sortiv miskantusu hihantskoho (Miscanthus × giganteus J.M. Greef & Deuter ex Hodkinson & Renvoize) na vidminnist, odnoridnist i stabilnist [Methods of examination of varieties of giant miscanthus (Miscanthus × giganteus J.M. Greef & Deuter ex Hodkinson & Renvoize) for distinctiveness, uniformity and stability]. UIESR K:, 16 (in Ukrainian).
Published
2023-04-03
How to Cite
Dekovets, V. A., Kulyk, M. I., Syplyva, N. O., & Rudenko, O. A. (2023). DEPENDENCE OF BIOMASS YIELD OF GIANT MISCANTNHUS ON QUANTITATIVE INDICATORS OF PLANTS WHEN GROWN WITH LEGUMES. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 50(4), 21-28. https://doi.org/10.32845/agrobio.2022.4.4