THE USE OF INDUCED MUTAGENESIS IN GRAIN AMARANTH BREEDING (REVIEW)
Abstract
Amaranth is a promising agricultural crop, the sown area under which is increasing in Ukraine and the countries of the European Union every year, which makes it attractive for agricultural producers. Amaranth seeds contain a large amount of easily digestible protein (up to 18%), lipids (up to 9.7%) and a complex of various vitamins necessary for the human body. In the article, based on the analysis of Ukrainian and foreign literary sources, an assessment of the prospects of using induced mutagenesis in amaranth breeding is carried out. Various methods of mutagenesis, their effectiveness and the mutations they induce on various agricultural crops are considered. It was noted that with the help of the use of various physical and chemical mutagens, new plant genotypes were created in the world, with morphological and economically valuable traits that cannot be obtained by other classical breeding methods. Based on a review of literary sources, it was established that the main method of induced mutagenesis, which was used in amaranth breeding practice, was the use of physical mutagenesis based on gamma radiation and the subsequent study of chromosomal aberrations, qualitative composition of seeds and phenotypic changes of plants. At the same time, the use of chemical mutagenesis and the mutations it induces remain almost unexplored. Among the main mutagens that have effectively proven themselves in mutational selection are alkylating substances, such as dimethyl sulfate, ethyl methanesulfonate, ethyleneimine, and others. After analyzing literary sources, it was noted that ethyl methanesulfonate is one of the promising chemical mutagens, which was successfully used on various agricultural crops, such as wheat, corn, quinoa, linseed, and others to create single-locus and multilocus mutations. However, studies on the influence of the mutagen ethyl methanesulfonate on grain species of the genus Amaranthus have not been conducted, which makes this direction promising for further scientific research and the creation of new genotypes of amaranth with improved economically valuable traits.
References
2. Aderibigbe, O. R., Ezekiel, O. O., Owolade, S. O., Korese, J. K., Sturm, B., & Hensel, O. (2022). Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A review. Critical Reviews in Food Science and Nutrition, 62(3), 656-669. doi: 10.1080/10408398.2020.1825323
3. Alcantara, T. P., Bosland, P. W., & Smith, D. W. (1996). Ethyl methanesulfonate-induced seed mutagenesis of Capsicum annuum. Journal of Heredity, 87(3), 239–241. doi: 10.1093/oxfordjournals.jhered.a022992
4. Amano, E., & Smith, H. H. (1965). Mutations induced by ethyl methanesulfonate in maize. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2(4), 344–351. doi: 10.1016/0027-5107(65)90070-9
5. Anwar, R., Ejaz-ul-Islam, Ghaffar, A., & Khan, M. R. (2019). Gamma rays-induced mutations for improving breadmaking quality of wheat. Journal of Radiation Research and Applied Sciences, 12(3), 268–274.
6. Auerbach, C. (1949). Chemical mutagenesis. Biological Reviews, 24(3), 355-391. doi: 10.1111/j.1469-185X.1949. tb00580.x
7. Auerbach, C., & Robson, J. M. (1946). Chemical production of mutations. Nature, 157(3984), 302–302. doi: 10.1038/157302a0
8. Babych, A. O., & Barvinchenko, S. V. (2013). Khimichnyi mutahenez yak metod otrymannia rozshyrenoho polimorfizmu u bobiv kormovykh [Chemical mutagenesis as a method of obtaining enhanced polymorphism in faba bean]. Kormy i kormovyrobnytstvo, (76), 31–36. (in Ukrainian).
9. Boyd, L. A., Smith, P. H., & Hart, N. (2006). Mutants in wheat showing multipathogen resistance to biotrophic fungal pathogens. Plant pathology, 55(4), 475–484.
10. Brenner, D. M., Johnson, W. G., Sprague, C. L., Tranel, P. J., & Young, B. G. (2013). Crop–weed hybrids are more frequent for the grain amaranth ‘Plainsman’than for ‘D136-1’. Genetic resources and crop evolution, 60, 2201–2205. doi: 10.1007/s10722-013-0043-8
11. Bruni, R., Medici, A., Guerrini, A., Scalia, S., Poli, F., Muzzoli, M., & Sacchetti, G. (2001). Wild Amaranthus caudatus seed oil, a nutraceutical resource from Ecuadorian flora. Journal of Agricultural and Food Chemistry, 49(11), 5455-5460. doi: 10.1021/jf010385k
12. Cabrera-Ponce, J. L., Valencia-Lozano, E., & Trejo-Saavedra, D. L. (2019). Genetic modifications of Corn. In Corn (pp. 43-85). AACC International Press. doi: 10.1016/B978-0-12-811971-6.00003-6
13. Da Luz, V. K., da Silveira, S. F. S., da Fonseca, G. M., Groli, E. L., Figueiredo, R. G., Baretta, D., et al. (2016). Identification of variability for agronomically important traits in rice mutant families. Bragantia 75, 41–50. doi: 10.1590/1678-4499.283
14. Das, S. (2012). Systematics and taxonomic delimitation of vegetable, grain and weed amaranths: a morphological and biochemical approach. Genetic resources and crop evolution, 59, 289–303. doi: 10.1007/s10722-011-9684-7
15. Encheva, J. (2009). Creating sunflower mutant lines (Helianthus annuus L.) using induced mutagenesis. Bulgarian Journal of Agricultural Science, 15, 109–118.
16. Europe Amaranth Market Size | Industry Report, 2021-2028. (n.d.). Market Research Reports & Consulting | Grand View Research, Inc. https://www.grandviewresearch.com/industry-analysis/europe-amaranth-market
17. Gengyo-Ando, K., & Mitani, S. (2000). Characterization of mutations induced by ethyl methanesulfonate, UV, and trimethylpsoralen in the nematode Caenorhabditis elegans. Biochemical and biophysical research communications, 269(1), 64–69. doi: 10.1006/bbrc.2000.2260
18. Greene, E. A., Codomo, C. A., Taylor, N. E., Henikoff, J. G., Till, B. J., Reynolds, S. H., & Henikoff, S. (2003). Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics, 164(2), 731–740. doi: 10.1093/genetics/164.2.731
9. Guerola, N., & Cerdá-Olmedo, E. (1975). Distribution of mutations induced by ethyl methanesulfonate and ultraviolet radiation in the Escherichia coli chromosome. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 29(1), 145–147. doi: 10.1016/0027-5107(75)90028-7
20. Gupta, V. K., & Gudu, S. (1990). Inheritance of some morphological traits in grain amaranthus. Euphytica, 46, 79–84. doi: 10.1007/BF00057621
21. Haldavnekar, P. C., Naik, H. P., Bhuvad, A. V., Kapse, V. D., Parulekar, Y. R., Vaidya, K. P., & Khobragade, N. H. (2020). Studies on yield and yield attributing character of amaranth (Amaranthus spp.) genotypes under Konkan agroclimatic conditions. International Journal of Chemical Studies, 8(1), 117–118. doi: 10.22271/chemi.2020.v8.i1b.8233
22. Hoptsii, T. I. (1999). Amarant: biolohiia, vyroshchuvannia, perspektyvy vykorystannia, selektsiia [Amaranth: biology, cultivation, prospects of use, selection]. Kharkiv : Kharkivskyi derzhavnyi ahrarnyi universytet im. V. V. Dokuchaieva. (in Ukrainian).
23. Hoptsii, T. I. (2002). Morfolohichni osoblyvosti y biolohichni osnovy vvedennia v kulturu amaranta v umovakh Livoberezhnoho Lisostepu Ukrainy [Morphological features and biological basis of the introduction of amaranth in the conditions of the Left Bank Forest Steppe of Ukraine]. Visn. Kharkiv. nats. ahrarn. un-tu. Seriia Roslynnytstvo, selektsiia i nasinnytstvo, ovochivnytstvo, (6), 36–51. (in Ukrainian).
24. Hoptsii, T. I. (2004). Polova skhozhist nasinnia amarantu zalezhno vid ahroekolohichnykh faktoriv [Field germination of amaranth seeds depending on agroecological factors]. Visnyk Sumsk. nats. ahrar. untu.(Seriia «Ahronomiia i biolohiia»), 6(9), 84–87. (in Ukrainian).
25. Hoptsii, T. I., Voronkov, M. F., Bobro, М. А., Myroshnychenko, L. O., Lymanska, S. V., Hudym, O. V., Hudkovska N. B., & Duda, Yu.V. (2018). Amarant: selektsiia, henetyka ta perspektyvy vyroshchuvannia [Amarant: breeding, genetics and cultivation prospects: Monograph]. KhNAU, Kharkiv, 362 (in Ukrainian).
26. Hoptsii, T. I., Voronkov, M. F., Zahoruiko, O. M., Zhuravel, D. V., & Hromenko, S. V. (2009). Amarant bilonasinnyi (A. hypochondriacus) yak vykhidnyi material v selektsii zernovoho amarantu [White-seeded amaranth (A. hypochondriacus) as a starting material in the breeding of grain amaranth]. Visn. Kharkiv. nats. ahrarn. un-tu. Seriia Roslynnytstvo, selektsiia i nasinnytstvo, ovochivnytstvo, (7), 75–80. (in Ukrainian).
27. Hricova, A., Fejer, J., Libiakova, G., Szabova, M., Gazo, J., & Gajdosova, A. (2016). Characterization of phenotypic and nutritional properties ofvaluable Amaranthus cruentus L. mutants. Turkish Journal of Agriculture and Forestry, 40(5), 761–771. doi: 10.3906/tar-1511-31
28. Hricová, A., Gajdošová, A., Libiaková, G., & Fejér, J. (2018). First Slovak Amaranth Varieties Generated through Radiation Mutagenesis (No. IAEA-CN--263).
29. Hricová, A., Mistríková, V., Gajdošová, A., Fejér, J., Nôžková, J., Kariluoto, S., ... & Szabóová, M. (2021). Comparative analysis reveals changes in some seed properties in amaranth mutant variety ‘Zobor’(A. hypochondriacus× A. hybridus). Agronomy, 11(12), 2565.
30. Hudkovska N. B., Hoptsii T. I. (2018). Urozhainist zerna amaranta zalezhno vid strokiv ta sposobiv sivby v umovakh Livoberezhnoho Lisostepu Ukrainy [Yielding ability of amaranth seeds depending on the sowing timing and methods in the conditions of the Left-bank forest steppe of Ukraine]. Visn. KhNAU. Seriia : Roslynnytstvo, selektsiia i nasinnytstvo, plodoovochivnytstvo i zberihannia, (2), 112–124. (in Ukrainian).
31. Hudym, O. V. (2014). Vplyv mutahennykh chynnykiv na skhozhist, vyzhyvanist, rist i rozvytok roslyn amaranta [Mutagenic Factors Influence on Germination, Survivability, Growth and Development of amaranth Plants]. Visn. Kharkiv. nats. ahrarn. un-tu. Seriia “Roslynnytstvo, selektsiia i nasinnytstvo, plodoovochivnytstvo”, (2), 62–67. (in Ukrainian).
32. Hudym, O. V., & Hoptsii, T. I. (2015). Indukovana minlyvist morfolohichnykh oznak u roslyn amaranta pry vykorystanni hamma-oprominennia [Induced changeability of marphological sighns of amaranth plants by using gamma-radiation]. Visn. Kharkiv. nats. ahrarn. un-tu. Seriia “Roslynnytstvo, selektsiia i nasinnytstvo, plodoovochivnytstvo”, (2), 66–74. (in Ukrainian).
33. Hudym, O. V., & Hoptsii, T. I. (2016). Vplyv peredposivnoi obrobky nasinnia amarantu hamma-promeniamy na chastotu vynyknennia mitotychnykh porushen v korenevii merystemi roslyn [Influence of presowing gamma – irradiationof amaranth seeds on the frequency of mitotic disorders in root meristem]. Selektsiia i nasinnytstvo, (109), 119–124. doi: 10.30835/2413-7510.2016.74209 (in Ukrainian).
34. Hudym, O. V., Lymanska, S. V., Goptsiy, T. I., Turchynova, N. P., Mykhailenko, V. O., Kryvoruchenko, R. V., ... & Stankevych, S. V. (2021). Amaranth variability at different doses of gamma radiation. Ukrainian Journal of Ecology, 11(8), 146-151.
35. Imamura, T., Takagi, H., Miyazato, A., Ohki, S., Mizukoshi, H., & Mori, M. (2018). Isolation and characterization of the betalain biosynthesis gene involved in hypocotyl pigmentation of the allotetraploid Chenopodium quinoa. Biochemical and biophysical research communications, 496(2), 280–286. doi: 10.1016/j.bbrc.2018.01.041
36. Jankowicz-Cieslak, J., Tai, T. H., Kumlehn, J., & Till, B. J. (2017). Biotechnologies for plant mutation breeding: protocols (p. 340). Springer Nature. doi: 10.1007/978-3-319-45021-6
37. Jiang, S.-Y., Ramachandran, S. (2010). Assigning biological functions to rice genes by genome annotation, expression analysis and mutagenesis. Biotechnol. Lett. 32, 1753–1763. doi: 10.1007/s10529-010-0377-7
38. Kandel, M., Rijal, T. R., & Kandel, B. P. (2021). Evaluation and identification of stable and high yielding genotypes for varietal development in amaranthus (Amaranthus hypochondriacus L.) under hilly region of Nepal. Journal of Agriculture and Food Research, 5, 100158. doi: 10.1016/j.jafr.2021.100158
39. Khomenko, S. O. (2006). Efektyvnist obrobky hibrydiv mutahenamy dlia stvorennia konkurentnospromozhnykh sortiv pshenytsi ozymoi miakoi [Efficacy of hybrids in order to establish competitive varieties of soft winter wheat]. Plant varieties studying and protection, (4), 25–31. doi: 10.21498/2518-1017.4.2006.67745 (in Ukrainian).
40. Kishchenko, O., Stepanenko, A., & Borysiuk, M. (2021). Indukovanyi mutahenez pshenytsi: vid radioaktyvnoho oprominennia do spetsyfichnoho redahuvannia heniv [Induced mutagenesis in wheat: from ionizing radiation to site-specific gene editing]. Fiziolohiia roslyn i henetyka, 53(1), 30–54. (in Ukrainian).
41. Komarova, I. B. (2014). Morfolohichni mutanty ryzhiiu yaroho zi zminenym zhyrnokyslotnym skladom olii [Morphological mutants of spring false flax with the altered fat and acid composition of oil]. Kormy i kormovyrobnytstvo, (78), 13–18. (in Ukrainian).
42. Koornneef, M. (2002). Classical mutagenesis in higher plants. Molecular plant biology, 1, 1–11.
43. Kulish, O., & Parii, M. (2020). Novyi morfotyp ovochevoi kukurudzy, otrymanyi metodom eksperymentalnoho mutahenezu [New morphotype of vegetable corn obtained by the method of experimental mutagenesis]. Visnyk ahrarnoi nauky, 98(10), 39–47. doi: 10.31073/agrovisnyk202010-06 (in Ukrainian).
44. Kumar, A., Kumar, J., & Singh, S. K. (2017). Induced Mutations for Wheat Improvement. Indian Journal of Genetics and Plant Breeding, 77(4), 579–594.
45. Kutscher, L. M., & Shaham, S. (2014). Forward and reverse mutagenesis in C. elegans. WormBook: the online review of C. elegans biology, 1–26. doi: 10.1895%2Fwormbook.1.167.1
46. Kutyshcheva, N. M., Shudria, L. I., & Sereda, V. O. (2017). Morfolohichni oznaky perspektyvnykh linii soniashnyku [Morphological characteristics of perspective sunflower lines]. Naukovo-tekhnichnyi biuleten Instytutu oliinykh kultur NAAN, (24), 85–93. (in Ukrainian).
47. Labajová, M., Senková, S., Žiarovská, J., Ražná, K., Bežo, M., Štefúnová, V., & Zeleňáková, L. (2011). The potential of ISSR markers in Amaranth gamma-radiance mutants genotypying. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 507–521.
48. Liakh, V. O., & Peretiatko, A. O. (2016). Indukovanyi khimichnym mutahenom spektr spadkovykh zmin u lonu oliinoho sortu Soniachnyi [Induced with chamical mutagen the spectrum of hereditary changes in linseed of solnechny variety]. Aktualni pytannia biolohii, ekolohii ta khimii, 12(2), 16–24. (in Ukrainian).
49. Lo, S. F., Fan, M. J., Hsing, Y. I., Chen, L. J., Chen, S., Wen, I. C., .& Yu, S. M. (2016). Genetic resources offer efficient tools for rice functional genomics research. Plant, cell & environment, 39(5), 998–1013. doi: doi.org/10.1111/pce.12632
50. Makliak, K. M., Kyrychenko, V. V., & Brahin, O. M. (2009). Selektsiia novykh linii-zakripliuvachiv sterylnosti soniashnyku [Selection of new sunflower sterility fixing lines]. Selektsiia i nasinnytstvo, (97), 13–19. doi: 10.30835/2413-7510.2009.77036 (in Ukrainian).
51. Maluszynski, M., Nichterlein, K., Van Zanten, L., Ahloowalia, S., (2000). Officially released mutant varieties – the FAO/IAEA Database (INIS-XA–291). International Atomic Energy Agency (IAEA): IAEA.
52. Mba, C., Afza, R., Bado, S., & Jain, S. M. (2010). Induced mutagenesis in plants using physical and chemical agents. Plant cell culture: essential methods, 20, 111–130. doi: 10.1002/9780470686522.ch7
53. Moustafa, K. A., & El-Awady, M. A. (2019). Induced mutation breeding in wheat for enhancing productivity and yield stability. Journal of Genetic Engineering and Biotechnology, 17(1), 1–9.
54. Muller, H. J. (1927). Artificial transmutation of the gene. Science, 66(1699), 84–87. doi: 10.1126/science.66.1699.84
55. Muralkey, M., & Jons, M. (2000). Isolation and analysis of termotolerance mutant of wheat. J. Exp. Bot, 342(51-P), 139–146.
56. Mykhailenko, V., Kyrychenko, V., Bragin, A., & Chuiko, D. (2019). Generation, Evaluation, and Prospects of Further Use of Mutations Based on New Homozygous Self-Pollinated Sunflower Lines. In Genotoxicity and Mutagenicity-Mechanisms and Test Methods. IntechOpen. doi: 10.5772/intechopen.89563
57. Nazarenko, M. M. (2011). Rozshyrennia riznomanittia vykhidnoho materialu dlia selektsii pshenytsi miakoi ozymoi [Increasing of diversity of source matherial for breeding of bread winter wheat]. Henetychni resursy roslyn. (9), 147–154. (in Ukrainian).
58. Nesmiian O. V., Hoptsii T. I. (2015). Adaptyvnyi potentsial zernovoho amaranta v umovakh Livoberezhnoho Lisostepu Ukrainy [Adaptive potential of grain amaranth in a left-bank forest-steppe of Ukraine]. Visnyk KhNAU. Seriia : Roslynnytstvo, selektsiia i nasinnytstvo, plodoovochivnytstvo, (1), 98–108. (in Ukrainian).
59. Neuffer, M. G., & Ficsor, G. (1963). Mutagenic action of ethyl methanesulfonate in maize. Science, 139(3561), 1296–1297. doi: 10.1126/science.139.3561.1296
60. Novak FJ, Brunner H. Plant breeding: Induced mutation technology for crop improvement. IAEA Bull. 1992 Apr;4:25–33.
61. Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., & Usman, M. (2016). Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology & Biotechnological Equipment, 30(1), 1–16. doi: 10.1080/13102818.2015.1087333
62. Pal, M., & Khoshoo, T. N. (1974). Grain amaranths. Evolutionary studies in world crops: diversity and change in the Indian subcontinent. Cambridge University Press, UK, 129–137.
63. Ramchander, S., Ushakumari, R., & Pillai, M. A. (2015). Lethal dose fixation and sensitivity of rice varieties to gamma radiation. Indian Journal of Agricultural Research, 49(1), 24–31. doi: 10.5958/0976-058X.2015.00003.7
64. Ramesh, M., Vanniarajan, C., Ravikesavan, R., Aiyan, K. E. A., & Mahendran, P. P. (2019). Determination of lethal dose and effect of EMS and gamma ray on germination percentage and seedling parameters in barnyard millet variety Co (Kv) 2. Electronic Journal of Plant Breeding, 10(2), 957–962. doi: 10.5958/0975-928X.2019.00123.6
65. Riabukha, S. S., Chernyshenko, P. V., & Sierikova, L. H. (2012). Efektyvnist zastosuvannia khimichnykh mutaheniv v selektsii soi [Effectiveness of using chemical mutagens in soybean selection]. Selektsiia i nasinnytstvo, (102), 60–65. doi: 10.30835/2413-7510.2012.59821 (in Ukrainian).
66. Robin, S., Pushpam, R., Rajeswari, S., Amudha, K., Jeyaprakash, P., Manonmani, S., ... & Ganesamurthy, K. (2019). CO 52 (IET 25487): A highly remunerative medium duration fine grain rice variety. Electronic Journal of Plant Breeding, 10(3), 1148–1160. doi: 10.5958/0975-928X.2019.00146.7
67. Rodas, B., & Bressani, R. (2009). The oil, fatty acid and squalene content of varieties of raw and processed grain amaranth. Archivos Latinoamericanos de Nutrición, 59(1), 82–87.
68. Roychowdhury R, Tah J, Hakeem KR, Ahmad P, Ozturk M. Crop improvement: new approaches and modern techniques. Mutagenesis. Potential Approach for Crop Improvement. 2013:149–188.
69. Sega, G. A. (1984). A review of the genetic effects of ethyl methanesulfonate. Mutation Research/Reviews in Genetic Toxicology, 134(2-3), 113–142. doi: 10.1016/0165-1110(84)90007-1
70. Shirasawa, K., Hirakawa, H., Nunome, T., Tabata, S., & Isobe, S. (2016). Genome‐wide survey of artificial mutations induced by ethyl methanesulfonate and gamma rays in tomato. Plant biotechnology journal, 14(1), 51–60. doi: 10.1111/pbi.12348
71. Sikora, P., Chawade, A., Larsson, M., Olsson, J., & Olsson, O. (2011). Mutagenesis as a tool in plant genetics, functional genomics, and breeding. International journal of plant genomics. doi: 10.1155/2011/314829
72. Sindu, A., Kumar, V. N. S. A., Vishnu, W. K., & Kumar, T. R. (2019). Amaranthus saradhiana (Amaranthaceae)-a new species from southern Western Ghats of Kerala, India. Phytotaxa, 403(3), 230–238. doi: 10.11646/phytotaxa.403.3.7
73. Singh, H., Verma, P., Lal, S. K., & Khar, A. (2021). Optimization of EMS mutagen dose for short day onion. Indian Journal of Horticulture, 78(1), 35–40. doi: 10.5958/0974-0112.2021.00005.0
74. Singh, R., Yadav, H., & Pandey, R. (2015). Genotype× Environment interactions and stability analysis for grain yield and protein content in grain amaranth (Amaranthus hypochondriacus L.). Trends in Biosciences, 8(15), 3791–3796.
75. Sreelathakumary, I., & Peter, K. V. (1993). Amaranth: Amarathus spp. In Genetic improvement of vegetable crops (pp. 315–323). Pergamon. doi: 10.1016/B978-0-08-040826-2.50026-6
76. Stadler, L. J. (1928). Mutations in barley induced by X-rays and radium. Science, 68(1756), 186–187. doi: 10.1126/science.68.1756.186
77. Steckel, L. E. (2007). The dioecious Amaranthus spp.: here to stay. Weed Technology, 21(2), 567–570. doi: 10.1614/WT-06-045.1
78. Stetter, M. G., & Schmid, K. J. (2017). Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop. Molecular phylogenetics and evolution, 109, 80–92. doi: 10.1016/j.ympev.2016.12.029
79. Thirumeni, S., Seetharam, K., Paramasivam, K., & Souframaien, J. (2016). Induced mutagenesis in rice (Oryza sativa L.) for improving salt tolerance. ORYZA-An International Journal on Rice, 53(4), 385–390.
80. Tihova, A., & Soroka, A. (2019). Vykorystannia novykh pokhidnykh dymetylsulfatu dlia otrymannia spadkovykh zmin u lonu oliinoho [Use of new derivatives of dimethyl sulphate for deriving hereditary variations at oil flux]. Visnyk ahrarnoi nauky, 97(4), 52–59. doi: 10.31073/agrovisnyk201904-08 (in Ukrainian).
81. Van Harten, A. M. (1998). Mutation breeding: theory and practical applications (Vol. 1). Cambridge University Press.
82. Vasko, O. V., Hudym, V. O., & Rozhak, H. O. (2015). Zastosuvannia eksperymentalnoho mutahenezu v selektsii roslyn [Application of experimental mutagenesis in plant breeding]. Selektsiia i nasinnytstvo, (107), 8–18. (in Ukrainian).
83. Vasko, V. O., & Kyrychenko, V. V. (2019). Induced mutagenesis for the creation of new starting material in sunflower breeding. Helia, 42(70), 17–36. doi: 10.1515/helia-2017-0024
84. Vasko, V.O., Hudym, O.V., Hoptsii, T.I., Kyrychenko, V.V. (2016). Minlyvist morfolohichnykh oznak roslyn pid vplyvom hamma-promeniv [Morphological variability features of plants under the influence of gamma-rays]. Visn. KhNAU. Seriia : Roslynnytstvo, selektsiia i nasinnytstvo, plodoovochivnytstvo i zberihannia, (1), 133–140. (in Ukrainian).
85. Westergaard, M. (1957). Chemical mutagenesis in relation to the concept of the gene. Experientia, 13, 224–234. doi: 10.1007/BF02157427
86. Yadav, P., Meena, H. S., Meena, P. D., Kumar, A., Gupta, R., Jambhulkar, S., ... & Singh, D. (2016). Determination of LD50 of ethyl methanesulfonate (EMS) for induction of mutations in rapeseed-mustard. Journal of Oilseed Brassica, 1(1), 77–82.
87. Záhorský, M., Socha, P., Gažo, J., Ostrovský, R., & Hricová, A. (2015). Starch variability in amaranth mutants induced by radiation mutagenesis. Recent Advances in Neglected and Under-utilized Species Research, 31–34.
88. Zhuravel, V. M. (2011). Selektsiina tsinnist zrazkiv hirchytsi biloi, stvorenykh metodom khimichnoho mutahenezu [Breeding importance of sinapis alba specimens, created with the method of chemical mutagenesis]. Naukovo-tekhnichnyi biuleten IOK UAAN, (16), 53–58. (in Ukrainian).