GREEN ROOFS AS A DIRECTION OF SCIENTIFIC RESEARCH

Keywords: green roofs, sustainable development, climate change, air quality, precipitation.

Abstract

Green roofs are artificial ecosystems that provide a natural solution to environmental problems such as climate change and the urban heat island. Green roofs help save both cooling and heating energy; settle solid particles and reduce air pollution; control effluents and water pollution; increase the amount of biodiversity and ensure its sustainability, as well as have aesthetic and psychological benefits and thus play a significant role in ensuring the sustainable development of cities. The goal of this study was the systematization and analysis of scientific research in the field of green roofs. The analysis of literary sources was carried out using the VOSviewer program. The constructed cloud of bibliographic research consists of 4 clusters, which were conventionally named: "green roofs", "cities", "conservation of natural resources" and "water". An analysis of literary sources was carried out according to the main keywords of the corresponding cluster. In particular, two key terms were singled out in the green cluster (cities), namely atmospheric air quality and climate. Green roofs have the potential to reduce emissions of toxic pollutants when implemented on a large scale and can have a positive effect on air quality, and are also able to regulate the urban thermal climate thanks to vegetation that lowers the air temperature in the city and provides thermal insulation of urban buildings and structures. In the red cluster (conservation of natural resources), the most attention is paid to the terms carbon dioxide absorption, biodiversity and sustainable development. Grasses have been proven to offset more CO2 emissions over the life cycle of green roofs, and the annual carbon sequestration capacity of green roofs ranges from 0.37 to 30.12 kg/m2. Green roofs are not only a potential home for local biodiversity, but also provide refuge for rare and endangered bird species and provide a safe habitat for invertebrates and vertebrates in urban areas. A significant number of co-benefits have been demonstrated, covering a wide range of sustainable development areas, suggesting green roofs as a popular engineering application worldwide to combat climate change, mitigate urban heat islands, and improve air and water quality. The most iconic terms of the blue cluster (rain) are: rainwater collection and retention of runoff from roofs. Green roofs, due to their ability to retain precipitation, are an effective method of reducing the load on urban drainage systems.

References

1. Al-Batsh, N., Al-Khatib, I. A., Ghannam, S., Anayah, F., Jodeh, S., Hanbali, G., Khalaf, B., & van der Valk, M. (2019). Assessment of rainwater harvesting systems in poor rural communities: a case study from Yatta area. Palestine Water, 11(3), 585.
2. Alcazar, S. S., Olivieri, F., & Neila, J. (2016). Green roofs: experimental and analytical study of its potential for urban microclimate regulation in Mediterranean-continental climates. Urban Clim, 17, 304–317.
3. Alexandri, E., & Jones, P. (2007). Developing a one-dimensional heat and mass transfer algorithm for describing the effect of green roofs on the built environment: comparison with experimental results. Build Environ, 42, 2835–2849.
4. Alim, M. A., Rahman, A., Tao, Z., Samali, B, Khan, M. M., & Shirin, S. (2020). Suitability of roof harvested rainwater for potential potable water production: a scoping review. J Clean Prod, 248, 119226. doi: 10. 1016/j. jclep ro. 2019. 119226.
5. Almeida, A. P., Liberalesso, T., Silva, C. M., & Sousa, V. (2021). Dynamic modelling of rainwater harvesting with green roofs in university buildings. J Clean Prod, 312, 127655. doi: 10. 1016/j. jclep ro. 2021. 127655.
6. Ávila-Hernández, A., Simá, E., & Ché-Pan, M. (2022). Research and development of green roofs and green walls in Mexico: A review. Sci Total Environ., 15; 856(Pt 1), 158978. doi: 10.1016/j.scitotenv.2022.158978.
7. Berndtsson, J. C., Bengtsson, L., & Jinno, K. (2009). Runoff water quality from intensive and extensive vegetated roofs. Justyna Ecol Eng, 35, 369–380.
8. Bianchini, F., & Hewage, K. (2012). How "green" are the green roofs? Lifecycle analysis of green roof materials. Building and Environment, 48, 57–65. Access mode: https://www.sciencedirect.com/science/article/abs/pii/S0360132311002895.
9. Burszta-Adamiak, E., & Spychalski, P. (2021). Water savings and reduction of costs through the use of a dual water supply system in a sports facility. Sustain Cities Soc, 66, 102620. doi: 10. 1016/j. scs. 2020. 102620.
10. Busker, T., de Moel, H., Haer, T., Schmeits, M., van den Hurk, B., Myers, K., Cirkel, D. G., & Aerts, J. (2022). Bluegreen roofs with forecast-based operation to reduce the impact of weather extremes. J Environ Manage, 1;301, 113750. doi: 10.1016/j.jenvman.2021.113750.
11. Cao, J., Hu, S., Dong, Q., Liu, L., & Wang, Z. (2019). Green roof cooling contributed by plant species with different photosynthetic strategies. Energy Build., 195, 45–50. doi: 10.1016/j.enbuild.2019.04.046.
12. Calheiros, C. S. C., & Stefanakis, A. I. (2021). Green Roofs Towards Circular and Resilient Cities. Circ Econ Sustain., 1(1), 395–411. doi: 10.1007/s43615-021-00033-0.
13. Cascone, S. (2019). Green Roof Design: State of the Art on Technology and Materials. Sustainability, 11, 3020.
14. Castleton, H. F., Stovin, V., Beck, S. B. M., & Davison, J. B. (2010). Green roofs; building energy savings and the potential for retrofit. Energy Build, 42, 1582–1591.
15. Chao-Hsien, L., En-Hao, H. & Yie-Ru, C. (2014). Designing a rainwater harvesting system for urban green roof irrigation. Water Supply, 15(2), 271–277. doi: 10. 2166/ ws. 2014. 107.
16. Chen, Y., Wang, Y., Liew, J. H., & Wang, P. L. (2021). Development of a methodological framework for evaluating biodiversity of built urban green infrastructures by practitioners. J Clean Prod, 303:127009. doi: 10. 1016/j. jclep ro. 2021. 127009.
17. Cook, L. M. & Larsen, T. A. (2021). Towards a performance-based approach for multifunctional green roofs: An interdisciplinary review. Build. Environ., 188, 107489.
18. Cristiano, E., Deidda, R., & Viola, F. (2021). The role of green roofs in urban Water-Energy-Food-Ecosystem nexus: a review. Sci Total Environ., 20, 756, 143876. doi: 10.1016/j.scitotenv.2020.143876.
19. Dissanayake, J. & Han, M. (2021) The effect of number of tanks on water quality in rainwater harvesting systems under sudden contaminant input. Sci Total Environ., 769, 144553. doi: 10. 1016/j. scito tenv. 2020. 144553.
20. Dong, J., Lin, M., Zuo, J., Lin, T., Liu, J., Sun, C., & Luo, J. (2020). Quantitative study on the cooling effect of green roofs in a high-density urban Area—a case study of Xiamen. China J. Clean. Prod., 255, 120152. doi: 10.1016/j.jclepro.2020.120152.
21. Dvorak, B., & Bousselot, J. (2021). Theoretical development of ecoregional green roofs. Ecoregional green roofs: theory and application in the Western USA and Canada. Springer International Publishing, 41–79. doi: 10. 1007/978-3- 030-58395-8_2.
22. Fabián, D., González, E., Sánchez Domínguez, M. V., Salvo, A., & Fenoglio, M. S. (2021). Towards the design of biodiverse green roofs in Argentina: assessing key elements for different functional groups of arthropods. Urban Fore Urban Greening, 61, 127107. doi: 10. 1016/j. ufug. 2021. 127107.
23. Gedge, D., & Kadas, G. (2005). Green roofs and biodiversity. Biologist, 52(3), 161–169.
24. Gnatuk, L., & Nesteruk, I. (2021). Green roofs in modern urban development. Theory and practice of design. Landscaping, 2(23), 126–133. doi: 10.18372/2415-8151.23.16278.
25. Gong, Y., Zhang, X., Li, J., Fang, X., Yin, D., & Xie, P. (2020). Factors affecting the ability of extensive green roofs to reduce nutrient pollutants in rainfall runoff Sci Total Environ., 732. Article 139248.
26. Gregoire, B. G., & Clausen, J. C. (2011). Effect of a modular extensive green roof on stormwater runoff and water quality. Ecol. Eng., 37, 963–969.
27. Hafizi Md Lani, N., Yusop, Z., & Syafiuddin, A. (2018). A review of rainwater harvesting in Malaysia: prospects and challenges. Water, 10(4):506. doi: 10. 3390/ w1004 0506.
28. Hardin, M., Wanielista, M., & Chopra, M. (2012). A mass balance model for designing green roof systems that incorporate a cistern for re-use. Water, 4(4), 914–931. doi: 10. 3390/ w4040 914.
29. Herasymchuk, L. O., & Valerko, R. A. (2020). Coverage of climate change trends in Zhytomyr over a 19-year period. Scientific developments of Ukraine and EU in the area of natural science: Collective monograph. Riga : Baltija Publishing, 85–101. doi: 10.30525/978-9934-588-73-0/1.6.
30. Herasymchuk, L. O., Valerko, R. A., & Patseva, I. G. (2023). Air temperature change manifestation at the Zhytomyr territory. Visnyk of V. N. Karazin Kharkiv National University Series «Еcоlogy», (29), 6–16. doi: 10.26565/1992-4259-2023-29-01.
31. Huang, X., & Wang, Y. (2019). Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: a case study of Wuhan, Central China ISPRS J. Photogramm. Remote. Sens., 152, 119–131. doi. 10.1016/j.isprsjprs.2019.04.010.
32. Hussien, A., Jannat, N., Mushtaha, E., & Al-Shammaa, A. (2023). A holistic plan of flat roof to green-roof conversion: Towards a sustainable built environment. Ecol. Eng., 190, 106925.
33. Imran, H. M., Kala, J., Ng, A. W. M., & Muthukumaran, S. (2018). Effectiveness of green and cool roofs in mitigating urban heat island effects during a heatwave event in the city of Melbourne in southeast Australia. J. Clean. Prod., 197, 393–405, doi: 10.1016/j.jclepro.2018.06.179.
34. Irga, Peter J., Fleck, R., Arsenteva, E., & Torpy, Fraser R. (2022). Biosolar green roofs and ambient air pollution in city centres: Mixed results. Building and Environment, 226, 109712. doi: 10.1016/j.buildenv.2022.109712.
35. Islam, S., Lefsrud, M., Adamowski, J., Bissonnette, B., & Busgang, A. (2013). Design, construction, and operation of a demonstration rainwater harvesting system for greenhouse irrigation at McGill University. Canada Horttechnology, 23(2), 220–226.
36. Jacobs, J., Beenaerts, N., & Artois, T. (2023). Green roofs and pollinators, useful green spots for some wild bee species (Hymenoptera: Anthophila), but not so much for hoverflies (Diptera: Syrphidae). Sci Rep., 26, 13(1), 1449. doi: 10.1038/s41598-023-28698-7.
37. Jaffal, I., Ouldboukhitine, S .E., & Belarbi, R. (2012). A comprehensive study of the impact of green roofs on building energy performance. Renew Energy, 43, 157–164.
38. Jamei, E., Chau, H. W., Seyedmahmoudian, M., & Stojcevski, A. (2021). Review on the cooling potential of green roofs in different climates. Sci Total Environ., 15, 791, 148407. doi: 10.1016/j.scitotenv.2021.148407.
39. Joshi, M. Y., & Teller, J. (2021). Urban Integration of Green Roofs: Current Challenges and Perspectives. Sustainability, 13, 12378. doi: 10.3390/su132212378.
40. Kavehei, E., Jenkins, G. A., Adame, M. F., & Lemckert, C. (2018). Carbon sequestration potential for mitigating the carbon footprint of green stormwater infrastructure. Renew Sustain Energy Rev, 94, 1179–1191. doi: 10. 1016/j. rser. 2018.07. 002.
41. Kolasa-Więcek, A. & Suszanowicz, D. (2021). The green roofs for reduction in the load on rainwater drainage in highly urbanised areas. Environ Sci Pollut Res Int., 28(26), 34269–34277. doi: 10.1007/s11356-021-12616-3.
42. Köhler, M. & Kaiser, D. (2019). Evidence of the climate mitigation effect of green roofs—a 20-Year weather study on an extensive green roof (EGR) in Northeast Germany. Buildings, 9 (7), 157. doi:10.3390/buildings9070157.
43. Kucukkaya, E., Kelesoglu, A., Gunaydin, H., Kilic, G. A. & Unver, U. (2021). Design of a passive rainwater harvesting system with green building approach. Int J Sustain Energ, 40(2), 175–187. doi: 10. 1080/ 14786 451. 2020. 18016 81.
44. Kumar, R. & Kaushik, S. C. (2005). Performance evaluation of green roof and shading for thermal protection of buildings. Build Environ, 40, 1505–1511.
45. Kuronuma, T. & Watanabe, H. (2017). Relevance of carbon sequestration to the physiological and morphological traits of several green roof plants during the first year after construction. Am J Plant Sci, 08, 14–27. doi: 10. 4236/ ajps. 2017.81002.
46. Kuronuma, T., Watanabe, H., Ishihara, T., Kou, D., Toushima, K., Ando, M., & Shindo, S. (2018). CO2 payoff of extensive green roofs with different vegetation species. Sustainability, 10, 2256. doi: 10. 3390/ su100 72256.
47. Kuzʹminsʹka, D. O., & Kravchenko, O. V. (2021). Zeleni dakhy yak odyn iz zakhodiv adaptatsiyi misʹkoho seredovyshcha do zmin klimatu [Green roofs as one of the measures to adapt the urban environment to climate change]. Ekolohiya ta okhorona navkolyshnʹoho seredovyshcha, (1), 10–17 (in Ukrainian). Access mode: http://eko.nau.edu.ua/article/view/235872
48. Lee, L. S., & Jim, C. Y. (2018). Thermal-cooling performance of subtropical green roof with deep substrate and woodland vegetation. Ecol. Eng., 119, 8–18.
49. Leotta, L., Toscano, S., & Romano, D. (2023). Which Plant Species for Green Roofs in the Mediterranean Environment? Plants (Basel), 27, 12(23), 3985. doi: 10.3390/plants12233985.
50. Liu, M. (2014). Probabilistic prediction of green roof energy performance under parameter uncertainty. Energy, 77, 667–674.
51. Liu, W., Wei, W., Chen, W., Deo, R. C., Si, J., & Xi, H. (2019). The impacts of substrate and vegetation on stormwater runoff quality from extensive green roof. J Hydrol, 576, 575–582.
52. Melnyk, O. P., & Oliynyk, M. P. (2020). Zeleni dakhy yak element pryrodnoho blahoustroyu mist [Green roofs as an element of natural landscaping of cities]. Enerhetyka ta pryrodni resursy, (1), 60–6 (in Ukrainian). Access mode: http://science.lpnu.ua/enp/all-volumes/2020-rik/vyipusk-1/melnik-o-p-oliynyk-m-p
53. Mihalakakou, G., Souliotis, M., Papadaki, M., Halkos, G., Paravantis, J.A., Makridis, S., & Papaefthymiou, S. (2022). Applications of earth-to-air heat exchangers: A holistic review. Renew. Sustain. Energy Rev., 155, 111921.
54. Mihalakakou, G., Souliotis, M., Papadaki, M., Menounou, P., Dimopoulos, P., Kolokotsa, D., Paravantis, J., Tsangrassoulis, A., Panaras, G., & Giannakopoulos, E. (2023). Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives. Renew. Sustain. Energy Rev., 180, 113306.
55. Morakinyo, T. E., Dahanayake, K. W. D. K. C., Ng, E., & Chow, C. L. (2017). Temperature and cooling demand reduction by green-roof types in different climates and urban densities: A co-simulation parametric study. Energy Build., 145, 226–237.
56. Niachou, A., Papakonstantinou, K., Santamouris, M., Tsagrassoulis, A. & Mihalakakou, G. (2001). Analysis of the green roof thermal properties and investigation of its energy performance. Energy Build, 33, 719–729.
57. Nguyen, C. N., Muttil, N., Tariq, M.A.U.R. & Ng, A.W.M. (2022). Quantifying the Benefits and Ecosystem Services Provided by Green Roofs—A Review. Water, 14, 68. doi: 10.3390/w14010068.
58. Pandey, S. & Hindoliya D. A. (2012). Ritu mod, Artificial neural network for predation of cooling load reduction using green roof over building in Sustainable city. Sustain Cities Soc, 3, 37–45.
59. Patseva, I., Alpatova, O., Rybak, O., Tsyhanenko-Dziubenko, I., & Medvid, O. (2022). Ozelenennia dakhu yak zakhid po adaptatsii zminy klimatu na prykladi m. Zhytomyr [Rooftop gardening as an adaption measure of the climate changes a case study of Zhytomyr]. Problemy khimii ta staloho rozvytku, 3, 67–74 (in Ukrainian). doi: 10.32782/pcsd-2022-3-9
60. Pauleit, S., Andersson, E., Anton, B., Buijs, A., Haase, D., Hansen, R., Kowarik, I., Niemelä, J., Olafsson, A. & van der Jagt, A. (2019). Urban green infrastructure—Connecting people and nature for sustainable cities. Urban For. Urban Green, 40, 1–344.
61. Peng, L. L. H., Yang, X., He, Y., Hu, Z., Xu, T., Jiang, Z. & Yao, L. (2019). Thermal and energy performance of two distinct green roofs: Temporal pattern and underlying factors in a subtropical climate. Energy Build., 185, 247–258.
62. Perivoliotis, D., Arvanitis, I., Tzavali, A., Papakostas, V., Kappou, S., Andreakos, G., Fotiadi, A., Paravantis, J. A., Souliotis, M. & Mihalakakou, G. (2023). Sustainable Urban Environment through Green Roofs: A Literature Review with Case Studies. Sustainability, 15, 15976. doi: 10.3390/su152215976.
63. Poursoleyman, M., Tziritis, E., & Papadopoulos, A. M. (2022). A review of quantitative models for designing green roofs. Sustainability, 14(3), 1605. Access mode: https://www.mdpi.com/2071-1050/14/3/1605.
64. Pugh, T. A. M., MacKenzie, A. R., Whyatt, J. D., & Hewitt, C. N. (2012). Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ Sci Technol., 46, 7692–7699.
65. Rafael, S., Correia, L. P., Ascenso, A., Augusto, B., Lopes, D., & Miranda, A. I. (2021). Are green roofs the path to clean air and low carbon cities? Sci Total Environ., 1, 798, 149313. doi: 10.1016/j.scitotenv.2021.149313.
66. Ramasubramanian, P., Starry, O., Rosenstiel, T., & Gall, E. T. (2019). Pilot study on the impact of green roofs on ozone levels near building ventilation air supply. Build. Environ., 151, 43–53.
67. Rowe, D. B. (2011). Green roofs as a means of pollution abatement. Environ Pollut., 159(8-9), 2100–2110. doi: 10.1016/j.envpol.2010.10.029.
68. Rybak, O., & Patseva, I. (2023). Zeleni dakhy yak element detsentralizovanoho upravlinnya doshchovoyu vodoyu [Green roofs as an element of decentralized rainwater management]. Problemy khimiyi ta staloho rozvytku, 2, 40–46 (in Ukrainian). doi: 10.32782/pcsd-2023-2-6
69. Saadatian, O., Sopian, K., Salleh, E., Lim, C. H., Riffat, S., & Saadatian, E. (2013). A review of energy aspects of green roofs. Renew Sustain Energy Rev., 23, 155–168.
70. Sailor, D. J. (2008). A green roof model for building energy simulation programs. Energy Build., 40, 1466–1478.
71. Santamouris, M. (2014). Cooling the cities – a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy, 103, 682–703, doi: 10.1016/j.solener. 2012.07.003.
72. Santamouris, M., Pavlou, C., Doukas, P., Mihalakakou, G., Synnefa, A., Hatzibiros, A. (2007). Investigating and analysing the energy and environmental performance of an experimental green roof system installed in a nursery school building in Athens. Greece Energy, 32, 1781–1788.
73. Santamouris, M., & Vasilakopoulou, K. (2021). Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation. E-Prime. Adv. Electr. Eng. Electron. Energy, 1, 100002.
74. Scolaro, T. P., & Ghisi, E. (2022). Life cycle assessment of green roofs: A literature review of layers materials and purposes. Sci Total Environ., 10, 829, 154650. doi: 10.1016/j.scitotenv.2022.154650
75. Sertuk, O. O., Naydenko, V. V., & Romashchenko, M. I. (2022). Zeleni dakhy yak instrument adaptatsiyi mist do zmin klimatu [Green roofs as a tool for adapting cities to climate change]. Suchasni problemy arkhitektury ta mistobuduvannya, 62, 156–166 (in Ukrainian). Access mode: https://nukpjournal.org.ua/index.php/cpam/article/view/741
76. Seyedabadi, M. R., Eicker, U., & Karimi. S. (2021). Plant selection for green roofs and their impact on carbon sequestration and the building carbon footprint. Environ Challenges, 4, 100119. doi: 10. 1016/j. envc. 2021
77. Shafique. M., Xue, X., & Luo, X. (2020). An overview of carbon sequestration of green roofs in urban areas. Urban For Urban Greening, 47. doi: 10. 1016/j. ufug. 2019. 126515.
78. Shahmohammadmirab, M., Hosseinzadeh, M., Dvorak, B., Bordbar, F., Shahmohammadmirab, H., & Aghamohammadi, N. (2022). Sustainable green roofs: a comprehensive review of influential factors. Environmental Science and Pollution Research, 29, 1–27. doi: 10.1007/s11356-022-23405-x.
79. Spala, A., Bagiorgas, H. S., Assimakopoulos, M. N., Kalavrouziotis, J., Matthopoulos, D., & Mihalakakou, G. (2008). On the green roof system. Selection, state of the art and energy potential. Renew Energy, 33, 173–177.
80. Speak, A. F., Rothwell, J. J., Lindley, S. J., & Smith, C. L. (2013). Rainwater runoff retention on an aged intensive green roof. Science of the Total Environment, 461, 28–38. Access mode: https://www.sciencedirect.com/science/article/abs/pii/S0048969713004908.
81. Stovin, V., Vesuviano, G., & Kasmin, H. (2012). The hydrological performance of a green roof test bed under UK climatic conditions. J. Hydrol., 414, 148–161.
82. Suszanowicz, D., & Więcek, K. A. (2019). The impact of green roofs on the parameters of the environment in urban areas—Review. Atmosphere, 10, 792.
83. Terrassa-Soler, S., Valls-Monserrat, J., Marin-Palma, G., & Pérez-Navarro, A. (2023). Long-term monitoring and modelling of extensive green roof behaviour in a Mediterranean climate. Sustainability, 15(5), 4289. Access mode: https://www.mdpi.com/2071-1050/15/5/4289.
84. Tomson, M., Kumar, P., Barwise, Y., Perez, P., Forehead, H., & French, K. (2021). Green infrastructure for air quality improvement in street canyons Environ Int, 146, Article 106288.
85. Tong, Z., Whitlow, T. H., Landers, A., & Flanner, B. (2016). A case study of air quality above an urban roof top vegetable farm. Environ. Pollut., 208, 256–260.
86. Vera, S., Pinto, C., Tabares-Velasco, P. C., & Bustamante, W. (2018). A critical review of heat and mass transfer in vegetative roof models used in building energy and urban environment simulation tools. Appl Energy, 232, 752–764.
87. Vijayaraghavan, K. (2016). Green roofs: a critical review on the role of components, benefits, limitations and trends. Renew Sustain Energy Rev, 57, 740–752.
88. Wan Ismail, W. Z., Abdullah, M. N., & Che-Ani, A. I. (2019). A review of factors affecting carbon sequestration at green roofs. J Facil Manag., 17(1), 76–89. doi: 10. 1108/ JFM- 11- 2017- 0069.
89. Whittinghill, L. J., Rowe, D. B., Schutzki, R., & Cregg, B. M. (2014). Quantifying carbon sequestration of various green roof and ornamental landscape systems. Landscape and Urban Planning, 123, 41–48. Access mode: https://www. sciencedirect.com/science/article/abs/pii/S0169204613002276.
90. Williams, K. J. H., Lee, K. E., Sargent, L., Johnson, K. A., Rayner, J., & Farrell, C. (2019). Appraising the psychological benefits of green roofs for city residents and workers. Urban For Urban Green, 44, Article 126399.
91. Williams, N. S. G., Rayner, J. P., Raynor, K. J. (2010). Green roofs for a wide brown land: opportunities and barriers for rooftop greening in Australia. Urban For Urban Green, 9, 245–251.
92. Wong, N. H., Cheong, D. K. W., Yan, H., Soh, J., Ong, C. L., & Sia, A. (2003). The effects of roof top garden on energy consumption of a commercial building in Singapore. Energy Build, 35, 353–364.
93. Wong, G. K., & Jim, C. Y. (2014). Quantitative hydrologic performance of extensive green roof under humid-tropical rainfall regime. Ecol. Eng., 70, 366–378.
94. Yan, J., Zhang, S., Zhang, J., Zhang, S., Zhang, C., Yang, H., Wang, R., & Wei, L. (2022). Stormwater retention performance of green roofs with various configurations in different climatic zones. J Environ Manage, 1, 319. doi: 10.1016/j.jenvman.2022.115447.
95. Yang, J., & Bou-Zeid, E. (2019). Scale dependence of the benefits and efficiency of green and cool roofs Landsc. Urban Plan., 185, 127–140, doi: 10.1016/j.landurbplan.2019.02.004.
96. Yang, J., Yu, Q., & Gong, P. (2008). Quantifying air pollution removal by green roofs in Chicago. Atmos. Environ., 42, 7266–7273.
97. Yao, S., Wang, Q., Zhang, J., Zhang, R., Gao, Y., Zhang, H., Li, J., & Zhou, Z. (2021). Ambient volatile organic compounds in a heavy industrial city: Concentration, ozone formation potential, sources, and health risk assessment. Atmospheric Pollution Research, 12, 5, 101053. doi: 10.1016/j.apr.2021.101053.
98. Zhang, Z., Szota, C., Fletcher, Tim D., Williams, Nicholas S. G., Werdin, J., & Farrell, C. (2018). Influence of plant composition and water use strategies on green roof stormwater retention, Science of The Total Environment, 625, 775–781, doi: 10.1016/j.scitotenv.2017.12.231.
99. Zheng, X., Kong, F., Yin, H., Middel, A., Yang, S., Liu, H., & Huang, J. (2023). Green roof cooling and carbon mitigation benefits in a subtropical city. Urban For. Urban Green, 86, 128018.
100. Zhou, L. W., Wang, Q., Li, Y., Liu, M., & Wang, R. Z. (2018). Green roof simulation with a seasonally variable leaf area index. Energy Build., 174, 156–167.
Published
2024-06-28
How to Cite
Valerko, R. A., Herasymchuk, L. O., Belmega, I. V., & Shatsilo, Y. G. (2024). GREEN ROOFS AS A DIRECTION OF SCIENTIFIC RESEARCH. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 55(1), 35-43. https://doi.org/10.32782/agrobio.2024.1.5