THERMAL REGIMES OF PODZOLIC SOILS ON SLOPING AND PLAIN LOCATIONS

Keywords: thermal regimes, dark gray podzolic soils, slopes, soil monitoring, thermosensor, exposure

Abstract

The article reflects research on the hydrot hermal conditions conducted in various agricultural regions aimed at assessing the influence of these parameters on crop yield and the quality of agricultural products. The research results emphasize the importance of accounting for agroclimatic parameters in modern agriculture to adapt to changing conditions. It is indicated that the scientific research was conducted in the forest-steppe zone of the Kharkiv region. Monitoring of the temperature regime of dark gray and meadow podzolic soils was carried out at four different sites. The sites include two types of slope exposure: a gentle straight slope with a northwest exposure and a convex slope with a southeast exposure, as well as flat plakor territory and ravine bottom. The main goal of the research was to analyze the annual temperature dynamics of the soil to determine the features of the formation of the thermal regime of these soils under modern climate conditions. Research methods included the use of thermosensor technology implemented on the Arduino controller, which allowed measuring soil temperature at depths from the soil surface to 120 cm with a step of 10 cm and a 30-minute interval throughout the year. Information was transmitted via the GSM network, and data were stored on a specialized web server in real-time mode. It is noted that the research allowed evaluating changes in temperature regimes at the specified locations. The paper presents an analysis of temperature fluctuations during warm and cold periods of surface and deep soil layers in different relief conditions throughout the year. Observations were made on short-term freezes and the duration of periods with negative temperatures in different types of terrain. Special attention is paid to comparing minimum temperatures and the duration of freezes on northwest and southeast slopes, plakor, and ravine bottom. It is established that the lowest and highest temperatures and their fluctuations are recorded on the soil surface. The maximum depth of soil freezing is up to 30 cm on the northwest slope, and the frost period lasts 104 days. The minimum surface soil temperature does not always coincide with the lowest air temperature.

References

1. Bell, J. E., Palecki, M. A., Baker, C. B., Collins, W. G., Lawrimore, J. H., Leeper, R. D., Hall, M. E., Kochendorfer, J., Meyers, T. P., Wilson, T., & Diamond, H. J. (2013). U.S. Climate reference network soil moisture and temperature observations. Journal of Hydrometeorology, 14(3), 977–988. doi: 10.1175/JHM-D-12-0146.1
2. Bulgakov, V., Pascuzzi, S., Adamchuk, V., Gadzalo, J., Nadykto, V., Olt, J., Nowak, J. & Kaminskiy, V. (2022). Dynamics of temperature variation in soil under fallow tillage at different depths. 12(4). doi: 10.3390/agriculture12040450
3. Byanjankar, S., Dhamala, M. K., Maharjan, S. R., & Kayastha, S. P. (2020). Soil respiration and its temperature sensitivity to different ecosystems in Annapurna Conservation Area, Nepal. Nepal Journal of Environmental Science, 8 (1), 69–81. doi: 10.3126/njes.v8i1.34471
4. Chappell, C., & Johnson, A. (2021). Comparison of soil moisture, soil temperature, and micro-gradient change influence on CO2 efflux in three land types within the Blackwater Conservation Area. Journal of Agriculture and Environmental Sciences, 10(2), 1–8. doi: 10.15640/jaes.v10n2a1
5. Chen, X., Li, Y., Chau, H. W., Zhao, H., Li, M., Lei, T., & Zou, Y. (2020). The spatiotemporal variations of soil water content and soil temperature and the influences of precipitation and air temperature at the daily, monthly, and annual timescales in China. Theoretical and Applied Climatology, 140, 429–451.
6. Dafflon, B., Wielandt, S., Lamb, J., McClure, P., Shirley, I., Uhlemann, S., Wang, C., Fiolleau, S., Brunetti, C., Akins, F. H., Fitzpatrick, J., Pullman, S., Busey, R., Ulrich, C., Peterson, J., & Hubbard, S. S. (2022). A distributed temperature profiling system for vertically and laterally dense acquisition of soil and snow temperature. The Cryosphere, 16(2), 719–736. doi: org/10.5194/tc-16-719-2022
7. Draganov, B.H. (2015). Pole sonyachnoyi radiatsiyi v roslynnomu pokrovi. [The field of solar radiation in the vegetation cover]. Promyslova teplotekhnika, 37 (5), 84–86.
8. Fiorini de Carvalho, A., Fernandes-Filho, E. I., Daher, M., Gomes, L. de C., Cardoso, I. M., Fernandes, R. B. A., & Schaefer, C. E. G. R. (2020). Microclimate and soil and water loss in shaded and unshaded agroforestry coffee systems. Agroforestry Systems, 95, 119-134.
9. Gałęzewski, L., Jaskulska, I., Jaskulski, D., Lewandowski, A., Szypłowska, A., Wilczek, A., & Szczepańczyk, M. (2021). Analysis of the need for soil moisture, salinity and temperature sensing in agriculture: a case study in Poland. Scientifc Reports, 11. doi: 10.1038/s41598-021-96182-1
10. Grünberg, I., Wilcox, E.J., Zwieback, S., Marsh, P., & Boike, J. (2020). Linking tundra vegetation, snow, soil temperature, and permafrost. Biogeosciences, 17(16), 4261–4279. doi: 10.5194/bg-17-4261-2020
11. Jarrah, M., Mayel, S., Franko, U., & Kuka, K. (2022). Effects of agricultural management practices on the temporal variability of soil temperature under different crop rotations in Bad Lauchstaedt-Germany. Agronomy, 12(5). doi: 10.3390/agronomy12051199
12. Lembrechts, J. J., & Van den Hoogen Jonas, J. (2021). Global maps of soil temperature. Global Change Biology, 28(9), 3110–3144. doi: 10.1111/gcb.16060
13. Levintal, E., Ganot, Y., Taylor, G., Freer-Smith, P., Suvocarev, K., & Dahlke, H.E. (2022). An underground, wireless, open-source, low-cost system for monitoring oxygen, temperature, and soil moisture. Soil, 8(1), 85–97. doi: 10.5194/soil-8-85-2022
14. Li, M., Wu, P., & Ma, Z. (2020). A comprehensive evaluation of soil moisture and soil temperature from third-generation atmospheric and land reanalysis data sets. International Journal of Climatology, 40 (13), 5744-5766. doi: org/10.1002/joc.6549
15. Li, R., Ma, J., Sun, X., Guo, X., & Zheng, L. (2021). Simulation of soil water and heat flow under plastic mulching and different ridge patterns. Agriculture, 11 (11). doi: 10.3390/agriculture11111099
16. Liu, P., Wang, H., Li, L., Liu, X., Qian, R., Wang, J., Yan, X., Cai, T., Zhang, P., Jia, Z., Ren, X. & Chen, X. (2020). Ridge-furrow mulching system regulates hydrothermal conditions to promote maize yield and efficient water use in rainfed farming area. Agricultural Water Management, 232. doi: 10.1016/j.agwat.2020.106041
17. Lu, Y., Peng, W., Ren, T., & Horton, R. (2021). Applications of Thermo-TDR sensors for soil physical measurements. Soil Science - Emerging Technologies, Global Perspectives and Applications. doi: 10.5772/intechopen.100285
18. Marynych, O. M., Lanko, A. I., Shcherban, M. I., & Shyshchenko, P. H. (1982). Fizychna heohrafiia Ukrainskoi RSR. [Physical geography of the Ukrainian SSR]. Vyshcha shk., Kyiv, 208.
19. Nanda, A., Sen, S., Sharma, A. N., & Sudheer, K. P. (2020). Soil temperature dynamics at hillslope scale—field observation and machine learning-based approach. Water, 12(3). doi: 10.3390/w12030713
20. Polupan, M.I., Solovei, V.B., Kysil, V.I., & Velychko, V.A. (2005). Vyznachnyk ekoloho-henetychnoho statusu ta rodiuchosti hruntiv Ukrainy. [Determinant of ecological and genetic status and soil fertility of Ukraine]. Koloobih, Kyiv, 304 (in Ukrainian)
21. Polupan, M.I., Baliuk, S.A., Solovei, V.B., Velychko, V.A., & Volkov, P.O. (2011). Pryrodnyi mekhanizm zakhystu skhylovykh hruntiv vid vodnoi erozii / Za red. M.I.Polupana. [Natural mechanism of protection of power soils from water erosion: monograph / edited by Polupana, M.I.]. Feniks, Kyiv, 144 (in Ukrainian)
22. Polupan, M.I., Velychko, V.A., & Solovei, V.B. (2015). Rozvytok ukrainskoho ahronomichnoho hruntoznavstva : henetychni ta vyrobnychi aspekty / za red. doktora s.h.nauk M.I.Polupana. [Development of Ukrainian agronomic soil science: genetic and production aspects / under the editorship of M.I. Polupan, Doctor of Agricultural Sciences]. Ahrar.nauka, Kyiv, 400 (in Ukrainian)
23. Simpson, E. G., Fraser, I., Woolf, H., & Pearse, W. D. (2022). Variation in near-surface soil temperature drives plant assemblage insurance potential. bioRxiv. The preprint server for biology. doi: 10.1101/2022.11.21.517364
24. Solovei V.B., Trotsenko O.O. (2023). Riznohlybynne doslidzhennia temperaturnoho rezhymu gruntiv tsyfrovymy datchykamy. [Multilevel investigation of soil temperature regime using digital sensor]. Tavriiskyi naukovyi visnyk. Silskohospodarski nauky, 131, 211–219 (in Ukrainian). doi: 10.32782/2226-0099.2023.131.27
25. Veremeenko, S., Furmanets, O., Semenko, L., Bykina, N., & Bobkov, V. (2021). Influence of climate changes on hydrothermal regime of dark gray podzolized soil of Western Forest Steppe. Scientific horizons, 24(12), 46–54. doi: 10.48077/scihor.24(12).2021.46-54
26. Wang, H., Cao, H., Jiang, F., Wang, X., & Gao, Y. (2022). Analysis of soil moisture, temperature, and salinity in cotton field under non-mulched drip irrigation in South Xinjiang. Agriculture, 12(10). doi: 10.3390/agriculture12101589
27. Wang, J., Gao, X., Zhou, Y., Wu, P., & Zhao, X. (2020). Impact of conservation practices on soil hydrothermal properties and crop water use efficiency in a dry agricultural region of the Tibetan plateau. Soil and Tillage Research, 200. doi: 10.1016/j.still.2020.104619
28. Wu, S., Wei, Z., Li, X., Wang, H., & Guo, S. (2022). Variation characteristics of soil temperature, moisture, and heat flux in the understorey of evergreen broadleaf forest in South China. Theoretical and Applied Climatology, 150, 929–940. doi: 10.1007/s00704-022-04206-1
29. Xia, Z., Zhang, G., Zhang, S., Wang, Q., Fu, Y., & Lu, H. (2021). Efficacy of root zone temperature increase in root and shoot development and hormone changes in different maize genotypes. Agriculture, 11 (6). doi: 10.3390/agriculture11060477
30. Yang, W., Wang, Y., He, C., Tan, X., & Han, Z. (2019). Soil water content and temperature dynamics under grassland degradation: a multi-depth continuous measurement from the agricultural pastoral ecotone in Northwest China. Sustainability, 11 (15). doi: 10.3390/su11154188
31. Zaszewski, D., & Gruszczyński, T. (2022). Low-cost automatic system for long-term observations of soil temperature. Geomatics and environmental engineering, 17(1). doi: 10.7494/geom.2023.17.1.7575
32. Zhang, Z., Pan, Z., Pan, F., Zhang, J., Han, G., Huang, N., Wang, J., Pan, Y., Wang, Z., & Peng, R. (2020). The change characteristics and interactions of soil moisture and temperature in the farmland in Wuchuan county, Inner Mongolia, China. Atmosphere, 11(5). doi: 10.3390/atmos11050503
33. Zhao, Y., Mao, X., Shukla, M. K., & Li, S. (2020). Modeling soil water–heat dynamic changes in seed-maize fields under film mulching and deficit irrigation conditions. Water, 12 (5). doi: org/10.3390/w12051330
Published
2024-10-23
How to Cite
Solovei, V. B., & Trotsenko, E. A. (2024). THERMAL REGIMES OF PODZOLIC SOILS ON SLOPING AND PLAIN LOCATIONS. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 56(2), 57-66. https://doi.org/10.32782/agrobio.2024.2.8