Sustainability of backcrossed potato seeds of different shelf life under the influence of ionizing irradiation

Keywords: potatoes, hybrid seeds, radiation doses, germination energy, seed viability, laboratory germination, crossbreeding combinations, seed age.

Abstract

The article presents the results of a study on the combination of the use of two methods: remote hybridization of potatoes and radiation, their impact on seed viability: germination energy and subsequent germination. The source material in the study used seeds from backcrossing of complex interspecific hybrids (three-six-species) with different pollinators both at the last stage and the previous ones. Dry seeds were treated with γ-rays, the source of which was 60Co on the installation "Teratron Elit-80" at the Institute of Plant Breeding. V. Ya. Yuriev NAAS of Ukraine. Irradiation intensity 7442 Ku. The following options are used: control, doses: 100, 150 and 200 Gy. Other techniques are common in potato growing.

It was found that the seeds, which were stored indoors for three years (sowing in 2014) reacted positively to its irradiation. For the realization of germination energy (the first four days), germination for 59 days and all overgrown seeds was the best option with a dose of 200 Gy, which exceeded the control, respectively, 1.7; 1.9 and 1.8 times. Much worse results (about a third) were obtained in the options of 100 and 150 Gy. Irradiation of seeds a year ago (sowing in 2015) had a similar effect, but in terms of germination energy it was inferior to the previously mentioned, even in control 12.6 times, although the share of germinated seeds for 59 days was a small difference 2.1 times.

Proven effect on seed germination, different in origin in the control. Among the seeds three years ago, the optimal effect of its origin and irradiation with radioactive cobalt was found in the combination of 91.318-6 x Svitanok Kyiv with germination energy of 7.0 %, germination for 59 days was 18.7 % and overall germination 25.7 %. Among the five year-old populations, these seeds accounted for 91.4 % and 97.9 %, respectively, relative to the first and third rates.

The mutual influence of germination doses, origin and shelf life of seeds on germination energy is proved. In terms of the total number of germinated seeds, the positive effect of radiation exposure, compared to the control, in 13 populations and their variants revealed a stimulating effect after three years of storage. A much worse effect of radiation on the overall germination was found with the use of fresh seeds. Only four populations and variants showed a positive effect on the process.

References

1. Tower, W. Z. (1906). An invertigation of evolution in Chrysomelid Beetles of the genus Leptinotarsa. Gagnegie Insti-tution of Waachington, 48, 8.
2. Blaringhem, L. (1908). Mutation of traumatismas. Etude aur Levolution desformes vegetales. Paris, 15.
3. Nadson, G. A. (1935). Jeksperimental'noe izmenenie nasledstvennyh svojstv mikroorganizmov [Experimental change in the hereditary properties of microohganisms], Moskva
4. Nadson, G. A., & Filippov, G. S. (1925). O vlijanii rentgenovyh luchej na polovoj process i obrazovanie mutantov u nizshih gribov [On the influence of X-rays on the sexual process and the formation of mutants in lower fungi]. Vestn. rentgenologii i radiologii, 3(6), 305‒310.
5. Delone, L. N. (1932). Rentgenomutacii u pshenicy [X-ray mutations in wheat]. Trudy laboratorii genetiki AN SSSR, 9, 173‒180 (in Russian).
6. Delone, L. N. (1957). O metode radiacionnoj selekcii [About the method of radiation selection]. Selekcija i semenovodstvo, 4, 23‒27 (in Russian).
7. Sapegin, A. A. (1935). Trudy po prikladnoj botanike, genetike i selekcii [Works on applied botany, genetics and breeding]. T. 11, Moskva, VASHNIL, 11.
8. Asseyeva, T. & Вlagovidova, M. (1935). Artificialmutationin the potato. Bull. Appl. Bot. Genetic sand Plant Вreed, 15, 81‒85.
9. Zia, M. A. B., Bakhsh, A., & Caliskan, M. E. (2018). Mutation breeding in potato: Endeavors and Challengis. The J. Anim. Plant. Sci., 28(1), 286‒295.
10. Singh, U. (1970). Radiation induced hooded eye mutants in potato. Sci. Cult., 36, 609‒610.
11. Mohanjain, S. (2012). Mutagenesis in crop improvement under the climate change. Romanian Biotechnological Lettes, 15(2), 88‒106.
12. Iman, M., Haiba Mona, F., & Abd-El, A. (2008). Biochemical effect of potato irradiation on potato tuber moth Phthorimaea operculella Zeller (Lepidoptera-Gelechiidae). Egypt. Acad. J. Biolog. Sci., 1(2), 1‒11.
13. Avdyukhina, V. M., Bliznyuk, U., Borschegovskaya, Yu. Yu. P., Ilyushin, A. S., Levin, I. S., Studenikin, F. R., & Chernyaev, A. P. (2016). Change of the kinetics of potato tuber sprouting after X-ray irradiation. Scientific notes of the Faculty of Physics M.V. Lomonosov Moskow State University, 3, 345‒351.
14. Rezaee, M., Almassi, M., Majdabadi, A., Minaei, S., & Khodaddi, M. (2011). Potato Sprout and Tuber Quality after Post Treatment with Gamma Irradiation on Different Dates. J. Agr. Sci. Tech., 13. 829‒842.
15. Marcu, D., Damian, G., Cosma, C., & Cristea, V. (2013). Gamma radiation effects on seed germination. growth and pigment content. and ESR study of induced free radicals in maize (Zea mays). J. Biol. Phys., 39(4), 625‒634.
16. Toni, A., Wiendl, T. A., Wiendl, F. W., Arthur, P. B., Franco, S. S. Franco, J. G., & Arthur, V. (2013). Effects of gam-ma radiation in tomato seeds. International Nuclear Atlantic Conference - INAC. Recife. PE. Brazil. November 24‒29, 42‒45.
17. Kozachenko, M. R. (2010). Experimental mutagenesis in barley selection, Kharkiv, 296 (in Ukrainian).
18. Souleymane Bado, Matumelo; Alice Rafiri, Kaoutar El-Achouri; Enoch, Sapey; Stephan Nielen, Abdelbagi; Mukhtar, Ali Ghanim; Brian Peter, Forster; Laimer, M. (2016). In vitro methods for mutation induction in potato (Solanum tuberosum L.). African Journal of Biotechnology, 15(39), 2132‒2145.
19. Ulukapi, K., & Nasircilar, A. G. (2015). Developments of Gamma Ray Applicationon Mutation Breeding Studies in Recent Years International Conf. On Agricul. Biolog. & Environment. Sci., 22‒23 July, 31‒34.
20. El-Hetawy, D. Y. M., AbdEl-Sabour, M. S., Refaat, M. H., & Salim, T. M. (2018). In vitro induction of salt tolerant po-tato (Solanum tuberosum L.) Plants with gamma irradiation and characterization of genetic variations through SDS-PAGE and ISSR-PCR analysis. Plant Biotechnology. 4th Intern. Conf.of Biotech. Applic.in Agric. Egypt. 4‒7 April, 2018, 167‒176.
21. Yaycili, O., & Alicamanoglu, S. (2012). Induction of Salt-Tolerant Potato (Solanum tuberosum L.) Mutants with Gamma Irradiation and characterization of Genetic Variations via RAPD-PCR Analasis. Turkish Journal Biol., 36, 405‒412.
22. Afrasiab, H., & Iqbal, J. (2010). In vitro Techniques and Mutagenesis for the Genetic Improvement of Potato cvs. Desiree and Diamant. Pac. J. Bot., 42(3), 1629‒1637.
23. Sherin, A., Mahfouze Amira, M., Esmael, Heba, & Allah, A. (2012). Mohasseb Genetic improvement of potato micro-tuber production in vitro by gamma irradiation. Biotechnology Apl., 19(4), 239‒245.
24. Podhaietskiy, A. A. (2004). Discription of potato resources and their practical use. Yurjev Plant Production Institute. 103‒109.
25. Podgaietskyi, A. Ad., Kravchenko, N. V., & Podgaietskyi. A. An. (2017). Results of use in potato selection of inter-specific hybrids with participation of S. bulbocastanum Dun. Proceedings on Applid Botany. Genetics and Breeding, 178(2), 33‒37 (in Russian).
26. Zhatova, H. O. (2009). General seed studies. University Book, Sumy, 272 (in Ukrainian).
27. Podhaietskiy, A. A. (2002). Kartoplja. Vyroshhuvannja kartopli z vykorystannjam botanichnogo nasinnja [Potato. Growing potatoes using botanical seeds]. Kyi'v, 1, 290‒313.
28. Podhaietskiy, А. А. (1991). Vyrashhivanie semjan iz zarodyshej n vitro [Growing seeds from embryos in vitro]. Tezisy dokl. Vsesojuzn. konf. Chernovcy, 1, 54.
29. Komolprasert, V., & Morehouse, K. (2004). Irradiation of Food and Packaging: Resent Developments.Amer. Chemi-cal Society, 107‒116.
30. Lorez-Mendoza, H., Carrillo-Rodriguez, J. C., & Chavez-Servia, J. L. (2012). Effect of gamma-irradiated seed on germination and growth in Capsicum annuum L. plants grown in a Greenhouse. Acta Horticulturae, 947, 77‒81.
31. Diaz, L. E., Garcia, S. A. L., Morales, R. A., Baez, R. I., Perez, V. E., Olivar, H. A., Vargas, R. E. J., Hernandez, H. P., DelaCruz, T. E., Garsia, A. J. M., Loeza, C. J. M. (2018). Effect of gamma radiation of 60Co on sunflower plants (Helianthus annuus L.) (Asteraceae) from irradiation achenes. Scientia Agropecuaria, 9(3), 189‒193.
Published
2020-10-26
How to Cite
Podgayetsky, A., Kravchenko, N., Kryuchko, L., & Stavytsky, A. (2020). Sustainability of backcrossed potato seeds of different shelf life under the influence of ionizing irradiation. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 40(2), 47-54. https://doi.org/10.32782/agrobio.2020.2.6