Cloning and bioinformatics analysis of cadmium-resistant gene TASFT2 in wheat
Abstract
Cadmium is a non-essential trace element which is highly toxic to plants. Because of its high mobility and toxicity, it has become a hot topic to study the molecular mechanism of cadmium uptake and transport by plants and to cultivate new crop varieties resistant to cadmium and low cadmium accumulation. Cd enters into the plant body, it will be absorbed by the root system and gradually transported to the above-ground part. Plants reduce toxic effects by absorbing and transporting heavy metals in different chemical forms and storing them in different organs and tissues. Under cadmium stress, plants produce a variety of physiological and biochemical mechanisms that limit cadmium absorption and transfer to reduce cadmium damage. Cadmium stress induces the expression level of metallothionine gene in gramineous crops (wheat and rice), which has a positive effect on improving plant resistance to cadmium and alleviating cadmium toxicity. It is not clear how the gene causes tolerance to heavy metals. Therefore, this experiment cloned the gene and analyzed the biological information to find the mechanism of cadmium resistance.
The full length of TaSFT2 gene was cloned by RT-PCR. The sequence analysis showed that ORF gene was 684bp, encoding 228 amino acids, with a molecular weight of 58.542kD and an isoelectric point of 9.16. The results of evolutionary tree analysis showed that wheat TaSFT2 was closely related to maize ZmGot1/Sft2 gene and rice OsGot1/Sft2 protein.
The basic information of TaSFT2 gene can be obtained by chromosome location analysis, intron/exon analysis, ORF analysis and expression profile analysis, etc. By analyzing the basic properties of TaSFT2 protein, hydrophobicity analysis, transmembrane region prediction, signal peptide prediction and similarity prediction, the properties of gene-encoded protein can be preliminarily determined and predicted. In particular, hydrophobicity analysis and transmembrane region prediction can be used to predict whether the gene is membrane protein, which has important reference significance for determining the direction of experimental research.
References
2. Meixiu, X., Wenxiong, L., Xiangxu, C. & Yiyuan, L. (2006). Relationship between cadmium distribution and cadmium tolerance in rice. Chinese Agricultural Science Bulletin, 2, 379‒381.
3. Li, H., Luo, N., Li, Y.W., Cai, Q. Y., Li, H. Y., Mo, C. H. & Wong, M. H. (2017). Cadmium in rice: transport mecha-nisms, influencing factors, and minimizing measures. Environmental Pollution, 224, 622‒630. doi: 10.1016/j.envpol.2017.01.087
4. Tanaka, K., Fujimaki, S., Fujiwara, T. & Yoneyama, T. (2003). Cadmium concentrations in the phloem sap of rice plants (Oryza saliva L.) treated with a nutrient solution containing cadmium (environment). Soil Science and Plant Nutrition, 49(2), 311‒313. doI: 10.1080/00380768.2003.10410014
5. Zhang, Y. X., Yu, F., Zhang, Y. Y. & Song, X. Q. (2008). Uptake, translocation and accumulation of cadmium in plant. Chinese Journal of Ecological Agriculture, 16(5), 1317‒1321. doi: 10.3724/SP.J.1011.2008.01317
6. Herren, T. & Feller, URS. (1997) Transport of cadmium via xylem and phloem in maturing wheat shoots: comparison with the translocation of zinc, strontium and rubidium. Annals of Botany, 80(5), 623‒628.
7. Jian, M., Zhang, D., Wang, X., Wei, S., Zhao, Y., Ding, Q., Han, Y. & Ma, L. (2020). Differential expression pattern of the proteome in response to cadmium stress based on proteomics analysis of wheat roots. BMC Genomics , 21, 343. doi: 10.1186/s12864-020-6716-8
8. Song, Y., Jin, L. & Wang, X. (2017). Cadmium absorption and transportation pathways in plants. Int. J. Phytoremedi-at, 19, 133–141. doi: 10.1080/15226514.2016.1207598
Ma, H., Jiao X., Xu, X., Li, J., Ni, D., Xu, R., Wang, Y. & Wang, X. (2020). Advances in Physiological and Molecular Mechanisms of 9. Cadmium Metabolism in Rice. J. Crops, 36(1), 1‒8. doi: 10.16035/j.issn.1001-7283.2020.01.001
10. Ghori, N., Ghori, T., Hayat, M. Q., Imadi, S. R., Gul, A., Altay, V. & Ozturk, M. (2019). Heavy metal stress and re-sponses in plants. Int. J. Environ. Sci. Technol. 16, 1807–1828. doi: 10.1007/s13762-019-02215-8
11. Choppala, G., Ullah, S., Bolan, N., Saif, S., Iqbal, M., Rengel, Z., Kunhikrishnan, A., Ashwath, N. & Ok, Y. S. (2014). Cellular Mechanisms in Higher Plants Governing Tolerance to Cadmium Toxicity. Critical Reviews in Plant Sciences, 33(5), 374‒391. doi: 10.1080/07352689.2014.903747
12. Abedi, T. & Mojiri, A. (2020). Cadmium uptake by wheat (Triticum aestivum L.). An Overview. Plants, 9, 500. doi: 10.3390/plants9040500
13. Chen, J., Zou, W., Meng, L., Fan, X., Xu, G. & Ye, G. (2019). Advances in the uptake and transport mechanisms and qtls mapping of cadmium in rice. Int J. Mol Sci., 20(14), 3417. doi: 10.3390/ijms20143417.
14. S Yali, X. & Qingguo, J. Wei. (2017). Research progress on the effects of cadmium stress on rice and its regulation techniques. Chinese Agricultural Science Bulletin, 33.10. doi: CNKI:SUN:ZNTB.0.2017-10-002.
15. Ali, M. & Nas, F. (2018). The effect of lead on plants in terms of growing and biochemical parameters: a review. MOJ Ecology & Environmental Sciences, 3(4), 265‒268. doi: 10.15406/mojes.2018.03.00098
16. Huang, X., Duan, S., Wu, Q, Yu, M. & Shabala, S. (2020). Cadmium accumulation in plants: structure-function rela-tions and tissue-specific operation of transporters in the spotlight. Plants (Basel), 9(2), 223. doi: 10.3390/plants9020223
17. Liu, X.S., Feng, S.J., Zhang, B.Q., Wang, M., Cao, H., Rono, J., Chen, X. & Yang, Z. (2019). OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biol., 19, 283. doi: 10.1186/s12870-019-1899-3
18. Sasaki, A., Yamaji, N. & Ma, J. F. (2014). Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J. Exp Bot, 65(20), 6013‒6021. doi: 10.1093/jxb/eru340
19. Russell, D. & Soulimane, T. (2012). Evidence for zinc and cadmium binding in a CDF transporter lacking the cyto-plasmic domain. J. FEBS Lett, 586(24), 4332‒4338. doi: 10.1016/j.febslet.2012.10.043
20. Takahashi, R., Ishimaru, Y., Shimo, H., Bashir, K., Senora, T., Sugimoto, K., Ono, K., Suzui, N., Kawachi, N., Ishii, S., Yin, Y.G., Fujimaki, S., Yano, M., Nishizawa, N. K. & Nakanishi, H. (2014). From laboratory to field: OsNRAMP5-knockdown rice is a promising candidate for Cd phytoremediation in paddy fields. PLoS One., 9(6), 98816. doi: 10.1371/journal.pone.0098816.
21. Chiang, H. C., Lo, J. C. & Yeh, K. C. (2006). Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol., 40(21), 6792‒6798. doi: 10.1021/es061432y.
22. Feeney, G. P., Zheng, D. & Kille, P. (2005). The phylogeny of teleost ZIP and ZnT zinc transporters and their tissue specific expression and response to zinc in zebrafish. Biochimica Et Biophysica Acta, 1732 (1‒3), 88‒95. doi: 10.1016/j.bbaexp.2005.12.002
23. Huai, J., Wang M., He, J., Zheng, J., Dong, Z., Lee, H., Zhao, J. & Wang, G. (2008). Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell, 27(12), 1861‒1868. doi: 10.1007/s00299-008-0608-8.
24. Zhu, Y. X. & Li, Y. (2007). Modern molecular biology higher education. Eleventh Five-Year national planning mate-rials, Zheng Xiaofeng book Publisher Higher Education Press, 33.
25. Bartels, D. & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23‒58, doi: 10.1080/07352680590910410
26. Liu, D., Chen, L., Jiang, S., Zhu, S., Qian, Y., Wang, F., Li, R. & Qunwei, Xu (2014). Formulation and characteriza-tion of hydrophilic drug diclofenac sodium-loaded solid lipid nanoparticles based on phospholipid complexes technology. Jour-nal of Liposome Research, 24(1), 17‒26. doi: 10.3109/08982104.2013.826241
27. Patel, A., Cholkar, K. & Mitra, A. K. (2014). Recent developments in protein and peptide parenteral delivery ap-proaches. Therapeutic Delivery, 5(3), 337‒365. doi: 10.4155/tde.14.5
28. Whelan, S. & Morrison, D. A. (2017). Inferring Trees. Methods Mol Biol., 1525, 349‒377. doi: 10.1007/978-1-4939-6622-6_14