STUDY OF COMMUNITY STRUCTURE AND DISTRIBUTION OF MIXED FOREST NЕАR NANWAN LAKE
Abstract
The community structure distribution of a forest that grows in the coastal zone is an important index for the diversity and sustainable development of riparian ecosystem and is also an important basis for the production of forest land management. In order to understand the ecological function of the riparian zone of Nanwan Lake (Xinyang City, Henan Province, China), the growth status of the forest in the downstream of the reservoir was investigated. The results of the study indicate that Pinus massoniana Lamb and Pistacia chinensis Bunge are the predominant species in the coastal zone. There is a gradual decrease in the representation of Pinus massoniana Lamb in this community. Lower story of Quercus dentate Thunb. and Pistacia chinensis Bunge demonstrates significant potential to replace the upper story. The tree structure characteristics (DBH - diameter of a tree trunk at breast high (1,3 m), tree height and crown width) were recorded at each experimental plot. The tree structure characteristics conform the inverted "J" distribution and the linear relationship between the DBH and tree height in the foreststand (can be well described by using Richard model equation), the model equation is H=1.3+20.095 (1–e-0.090D)1.765. In the absence of anthropogenic accidents or natural extremes, the forest lands near Nanwan Lake could effectively use environmental benefits for a long time. In order to improve the level of forest management in mixed forests in these areas, it is suggested to closely monitor the growth status of trees, cut dead or poor growing Pinus massoniana Lamb, and prevent the occurrence of forest fires.
References
2. Bohn, F. J. & Huth, A. (2017). The importance of forest structure to biodiversity–productivity relationships. Royal Society Open Science, 4(1), 160521. doi: 10.1098/rsos.160521
3. Buongiorno, J. (2001). Quantifying the implications of transformation from even to uneven-aged forest stands. Forest Ecology and Management, 151(1–3), 121–132. doi: 10.1016/S0378-1127(00)00702-7
4. Clark, J. S. (2010). Individuals and the Variation Needed for High Species Diversity in Forest Trees. Science, 327(29), 1129–1132. doi: 10.1126/science.1183506
5. Curtis, J. T. & McIntosh, R. P. (1951). An Upland Forest Continuum in the Prairie-Forest Border Region of Wisconsin. Ecology, 32(3), 476–496. doi: 10.2307/1931725
6. Duduman, G. (2011). A forest management planning tool to create highly diverse uneven-aged stands. Forestry, 84(3), 301-314. doi:10.1093/forestry/cpr014
7. Dybala, K. E., Matzek, V., Gardali T. & Seavy, N. E. (2019). Carbon sequestration in riparian forests: A global synthesis and meta-analysis. Global Change Biology, 25, 57–67. doi:10.1111/gcb.14475
8. González, E., Felipe-Lucia, M. R., Bourgeois, B., Boz, B., Nilsson, C., Palmer, G. & Sher, A. A. (2016). Integrative conservation of riparian zones. Biological Conservation, S0006320716306887. doi: 10.1016/j.biocon.2016.10.035
9. Gregory, S. V., Swanson, F. J., Arthur, M. K. W. & Cummins, K. W. (1991). An ecosystem perspective of riparian zones. Bioence, 41(8), 540–551.
10. Hagan, J. M, Pealer, S. & Whitman, A. A. (2006). Do small headwater streams have a riparian zone defined by plant communities? Canadian Journal of Forest Research, 36(36), 2131–2140. doi: 10.1139/X06-114
11. Kominoski, J. S., Shah, J. J. F., Canhoto, C., Fischer, D. G., Giling, D. P., González, E., Griffiths N. A., Larrañaga A., LeRoy, C. J., Mineau, M. M., McElarney, Y. R., Shirley, S. M., Swan, C. M. & Tiegs, S. D. (2013). Forecasting functional implications of global changes in riparian plant communities. Frontiers in Ecology & the Environment, 11(8), 423–432. doi: 10.1890/120056
12. Kreutzweiser, D. P., Sibley, P. K., Richardson, J. S. & Gordon, A. M. (2012). Introduction and a theoretical basis for using disturbance by forest management activities to sustain aquatic ecosystems. Freshwater Science, 31(1), 224–231. doi: 10.1899/11-114.1
13. Kuglerová, L., Jansson, R., Ågren, A., Laudon, H. & Malm-Renöfält, B. (2014a). Groundwater discharge creates hotspots of riparian plant species richness in a boreal forest stream network. Ecology, 95(3), 715–725. doi: 10.1890/13-0363.1
14. Kuglerová, L., Ågren, A., Jansson, R. & Laudon, H. (2014b). Towards optimizing riparian buffer zones: Ecological and biogeochemical implications for forest management. Forest Ecology and Management, 334, 74–84. doi: 10.1016/j.foreco.2014.08.033
15. Livesley, S. J., Baudinette, B. & Glover, D. (2014). Rainfall interception and stem flow by eucalypt street trees – the impacts of canopy density and bark type. Urban Forestry & Urban Greening, 13(1), 192–197. doi: 10.1016/j.ufug.2013.09.001
16. Mantgem, P. J. V., Stephenson, N. L., Byrne, J. C. Daniels, L. D., Franklin, J. F., Fulé, P. Z., Harmon, M. E., Larson, A. J., Smith J. M., Taylor A. H. & Veblen, T. T. (2009). Widespread increase of tree mortality rates in the western United States. Science (New York, N.Y.), 323, 521–524. doi: 10.1126/science.1165000
17. Marks, C. O., Yellen, B. C., Wood, S. A., Martin, E. H. & Nislow, K. H. (2020). Variation in tree growth along soil formation and microtopographic gradients in riparian forests. Wetlands, 08, 1–14. doi: 10.1007/s13157-020-01363-9
18. Myster, R. W. (2018). What we know about the composition and structure of igapó forests in the Amazon basin. Botanical Review, (84), 394–410. doi: 10.1007/s12229-018-9204-y
19. Naeem, S. (2002). Ecosystem consequences of biodiversity loss:the evolution of a paradigm. Ecology, 83(6), 1537-1552. doi: 10.2307/3071972
20. Naiman, R. J. & Decamps, H. (1997). The ecology of interfaces:Riparian zone. Annual Review of Ecology & Systematics, 28, 621–658. doi: 10.1146/annurev.ecolsys.28.1.621
21. Oldén, A., Peura, M., Saine, S., Kotiaho, J. S. (2019). The effect of buffer strip width and selective logging on riparian forest microclimate. Forest Ecology and Management, 453, 117623. doi: 10.1016/j.foreco.2019.117623
22. Peder, W., & Ljusk, O. E. (2000). Solving the stand management problem under biodiversity-related considerations. Forest Ecology & Management, 126, 361–376. doi: 10.1016/S0378-1127(99)00107-3
23. Pommerening, A. (2002). Approaches to quantifying forest structures. Forestry, 75(3), 305–324. doi: 10.1093/forestry/75.3.305
24. Poulsen, J. R., Koerner, S. E., Miao, Z., Medjibe, V. P., Banak, L. N. & White, L. J. T. (2017). Forest structure determines the abundance and distribution of large lianas in Gabon. Global Ecology & Biogeography, 26(4), 472-485. doi: 10.1111/geb.12554
25. Ran, Y., Ma, M., Liu, Y., Zhou, Y., Sun X., Wu S. & Huang, P. (2020). Hydrological stress regimes regulate effects of binding agents on soil aggregate stability in the riparian zones. Catena, 196, 104815. doi: 10.1016/j.catena.2020.104815
26. Ring, E., Widenfalk, O., Jansson, G. Holmström, H., Högbom, L. & Sonesson, J. (2017). Riparian forests along small streams on managed forest land in Sweden. Scandinavian Journal of Forest Research, 33(2), 133–146. doi: 10.1080/02827581.2017.1338750
27. Rolstad, J., Gjerde, I., Storaunet, K., O. & Rolstad, E. (2001). Epiphytic lichens in Norwegian coastal spruce forest: Historic logging and present forest structure. Ecological Applications, 11(2), 421–436. doi: 10.2307/3060899
28. Schulte, B. J. & Buongiorno, J. (1998). Effects of uneven-aged silviculture on the stand structure, species composition, and economic returns of loblolly pine stands. Forest Ecology & Management, 111(1), 83–101. doi: 10.1016/S0378-1127(98)00312-0
29. Sibley, P. K., Kreutzweiser, D. P., Naylor, B. J., Richardson, J. S. & Gordon, A. M. (2012). Emulation of natural disturbance (END) for riparian forest management: synthesis and recommendations. Freshwater Science, 31(1), 258–264. doi: 10.1899/11-094.1
30. Sun, J., Yu, X., Wang, H., Jia, G., Zhao, Y. Tu, Z., Deng, W., Jia, J. & Chen, J. (2018). Effects of forest structure on hydrological processes in China. Journal of Hydrology, 561, 187–199. doi: 10.1016/j.jhydrol.2018.04.003
31. Tinya, F., Márialigeti, S., Bidló, A., & Ódor, P. (2018). Environmental drivers of the forest regeneration in temperate mixed forests. Forest Ecology and Management, 433, 720–728. doi: 10.1016/j.foreco.2018.11.051
32. Tolkkinen, M., Mykrä, H., Annala, M., Markkola, A. M., Vuori, K. M. & Muotka, T. (2015). Multi-stressor impacts on fungal diversity and ecosystem functions in streams: natural vs. anthropogenic stress. Ecology, 96(3), 672–683. doi: 10.1890/14-0743.1
33. Tolkkinen, M. J., Heino, J., Ahonen, S. H. K., Lehosmaa, K. & Mykra, H. (2020). Streams and riparian forests depend on each other: A review with a special focus on microbes. Forest Ecology and Management, 462, 117962. doi: 10.1016/j.foreco.2020.117962
34. Valbuena, R., Packalén, P., Martin-Fernández, S. & Matti, M. (2012). Diversity and equitability ordering profiles applied to study forest structure. Forest Ecology and Management, 276, 185–195. doi: 10.1016/j.foreco.2012.03.036
35. Yuan, Z., Wang, S., Ali, A., Gazol, A., Ruiz-Benito, P., Wang, X., Lin, F., Ye, J., Hao Z. & Loreau M. (2018). Aboveground carbon storage is driven by functional trait composition and stand structural attributes rather than biodiversity in temperate mixed forests recovering from disturbances. Annals of Forest Science, 75(3), 67. doi: 10.1007/s13595-018-0745-3
36. Zhang, Y., Chen, H. Y. H. & Reich, P. B. (2012). Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. Journal of Ecology, 100(3), 742–749. doi: 10.1111/j.1365-2745.2011.01944.