WAYS OF THE CADMIUM ACCUMULATION MONITORING IN SUNFLOWER AND OTHER CROPS: OVERVIEW

Keywords: sunflower, breeding, Cd absorption, Cd transport, Cd distribution, Cd stress.

Abstract

Steady trend of the last salt is an increase in the total concentration of dangerous elements and their compounds in agricultural soils. The consequence of this process is the growth of requirements for crop quality and the intensification of research aimed at forming a theoretical basis and finding practical ways to solve this problem. With the development of industry, Cd pollution becomes more and more serious, which poses a serious threat to agricultural production and human health. Cadmium (Cd) is an important pollutant in farmland soil. Breeding of low Cd accumulation crops can reduce the risk of heavy metal removing into the human food chains and can solve the problem of food safety production in contaminated soil. Therefore, studies on Cd absorption and accumulation in crops have attracted the attention of researchers all over the world. The possibility of solving this problem (to create vatieties with low Cd accumulation) by selection methods in particular, sunflower, rice, wheat, soybean and maize, is considered in the article. From the other hand, the ability of individual crops and varieties to accumulate of high concentrations of harmful elements in the future can be realized as a separate selection and technological direction for the remediation of agricultural land. This paper reviews and summarizes the physiological characteristics of uptake, transport and antioxidant response of crops to Cd stress. The differences between them indicate that different crop varieties adopt different adaptation strategies to Cd stress. The characteristics of Cd accumulation in several crops such as sunflower are expounded. Methods to reduce Cd uptake in crops and breeding strategies for low Cd are put forward. Finally, the problems and prospects of low Cd breeding are put forward. In order to further promote the breeding of Cd low accumulation crops, the breeding utilization should be strengthened in the future, too. It will provide important theoretical guidance and ideas for reducing Cd uptake in crops and low Cd breeding in the future. The relevance of the problem of the cadmium controlling migration along the food chain determines the need of experimental studies, primarily in countries with the dominance of sunflower in the сrops area structure.

References

1. Abbas, S., Javed, M.T., Shahid, M., Hussain, I., Haider, M.Z., Chaudhary, H.J., Tanwir, K., & Maqsood, A. (2020). Acinetobacter sp. SG-5 inoculation alleviates cadmium toxicity in differentially Cd tolerant maize cultivars as deciphered by improved physio-biochemical attributes, antioxidants and nutrient physiology. Plant Physiol Biochem, 155, 815–827.
2. Ahmad, P., Sarwat, M., Bhat, N.A., Wani, M.R., Kazi, A.G., & Tran, L.S. (2015). Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLoS One, 10 (1), e0114571. doi: 10.1371/journal.pone.0114571.
3. Alaboudi, K.A., Ahmed, B., & Brodie, G. (2018). Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Annals of Agricultural Sciences.
4. Ali, Z., Mohammad, A., Riaz, Y., Shakeel, A., Khan, K.Y., Quraishi, U.M., & Malik, R.N. (2021). Heavy metal phytoaccretion, biochemical responses and non-carcinogenic human health risks of genetically diverse wheat genotypes cultivated with sewage of municipal origin. Int J Phytoremediation, 23(6), 619–631. doi: 10.1080/15226514.2020.1847033.
5. Aoshima, K. (2012). Itai-itai disease: cadmium-induced renal tubular osteomalacia. Nihon eiseigaku zasshi. Japanese journal of hygiene, 67 (4).
6. Bakulski, K.M., Seo, Y.A., Hickman, R.C., Brandt, D., Vadari, H.S., Hu, H., & Park, S.K. (2020). Heavy metals exposure and alzheimer’s disease and related dementias. J Alzheimers Dis, 76 (4), 1215–1242.
7. Barcelo, J., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: A review. Journal of Plant Nutrition, 13 (1).
8. Bayat, M., Faramarzi, A., Ajalli, J., Abdi, M., & Nourafcan, H. (2021). Bioremediation of potentially toxic elements of sewage sludge using sunflower (Heliantus annus L.) in greenhouse and field conditions. Environ Geochem Health. doi: 10.1007/s10653-021-01018-6.
9. Belhaj, D., Elloumi, N., Jerbi, B., Zouari, M., Abdallah, F.B., Ayadi, H., & Kallel, M. (2016). Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus). Environ Sci Pollut Res Int, 23 (20), 20168–20177.
10. Benavides, B.J., Drohan, P.J., Spargo, J.T., Maximova, S.N., Guiltinan, M.J., & Miller, D.A. (2021). Cadmium phytoextraction by Helianthus annuus (sunflower), Brassica napus cv Wichita (rapeseed), and Chyrsopogon zizanioides (vetiver). Chemosphere, 265, 129086.
11. Chae, M.J., Jung, G.B., Kang, S.S., Kong, M.S., Kim, Y.H., & Lee, D.B. (2014). Evaluation of the Feasibility of Phytoremediation of Soils Contaminated with Cd, Pb and Zn using Sunflower, Corn and Castor plants. Korean journal of soil science and fertilizer.
12. Chen, F., Wang, F., Wu, F., Mao, W., Zhang, G., & Zhou, M. (2010a). Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiol Biochem, 48 (8), 663–672. doi: 10.1016/j.plaphy.2010.05.001.
13. Chen, F., Wang, F., Wu, F.B., Mao, W.H., Zhang, G.P., & Zhou, M.X. (2010b). Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiology and Biochemistry, 48 (8), 663–672. doi: 10.1016/j.plaphy.2010.05.001.
14. Chen H., Yang Y., Ye Y., Tao L., Fu X., Liu B., Wu Y. (2019). Differences in cadmium accumulation between indica and japonica rice cultivars in the reproductive stage. Ecotoxicology and environmental safety, 186: 109795.
15. Chen, H., Zhang, W., Yang, X., Wang, P., McGrath, S.P., & Zhao, F.J. (2018). Effective methods to reduce cadmium accumulation in rice grain. Chemosphere, 207, 699–707. doi: 10.1016/j.chemosphere.2018.05.143.
16. Chen, Y.P., Chen, D., & Liu, Q. (2017). Exposure to a magnetic field or laser radiation ameliorates effects of Pb and Cd on physiology and growth of young wheat seedlings. Journal of photochemistry and photobiology, 169, 171–177. doi: 10.1016/j.jphotobiol.2017.03.012.
17. Christophe, L., Michiel, H., Jaco, V., Marijke, G., Els, K., & Ann, C. (2017). Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Frontiers in plant science, 8, 1867.
18. Cornu, J.Y., Bussière, S., Coriou, C., Robert, T., Maucourt, M., Deborde, C., Moing, A., & Nguyen, C. (2020). Changes in plant growth, Cd partitioning and xylem sap composition in two sunflower cultivars exposed to low Cd concentrations in hydroponics. Ecotoxicol Environ Saf, 205, 111145.
19. Dakak, R.A.E., & Hassan, I.A. (2020). The alleviative effects of salicylic acid on physiological indices and defense mechanisms of maize (Zea Mays L. Giza 2) stressed with cadmium. Environmental Processes: An International Journal, 7 (3).
20. De Andrade, L.C., Andreazza, R., & de Oliveira Camargo, F.A. (2018). Cultivation of sorghum and sunflower in soils with amendment of sludge from industrial landfill. International Journal of Recycling of Organic Waste in Agriculture.
21. Dias, M.C., Monteiro, C., Moutinho-Pereira, J., Correia, C., Goncalves, B., & Santos, Conceição. (2013). Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiologiae Plantarum, 35 (4).
22. Dixit, V., Pandey, V., & Shyam, R. (2001). Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot, 52(358), 1101–1109. doi: 10.1093/jexbot/52.358.1101.
23. El-Hassanin, A.S., Samak, M.R., Abdel-Rahman, G.N., Abu-Sree, Y.H., & Saleh, E.M. (2020). Risk assessment of human exposure to lead and cadmium in maize grains cultivated in soils irrigated either with low-quality water or freshwater. Toxicol Rep, 7, 10–15. doi: 10.1016/j.toxrep.2019.11.018.
24. Fan, J.L., Wei, X.Z., Wan, L.C., Zhang, L.Y., Zhao, X.Q., Liu, W.Z., Hao, H.Q., & Zhang, H.Y. (2011). Disarrangement of actin filaments and Ca²⁺ gradient by CdCl₂ alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking. J Plant Physiol, 168 (11), 1157–1167.
25. Frey, M., Klaiber, I., Conrad, J., & Spring, O. (2020). CYP71BL9, the missing link in costunolide synthesis of sunflower. Phytochemistry, 177, 112430.
26. Gao, L., Chang, J.D., Chen, R.J., Li, H.B., Lu, H.F., Tao, L.X., & Xiong, J. (2016). Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice. Rice (N Y), 9 (1), 39. doi: 10.1186/s12284-016-0112-7.
27. Genchi, G., Sinicropi, M.S., Lauria, G., Carocci, A., & Catalano, A. (2020). The Effects of Cadmium Toxicity. Int J Environ Res Public Health, 17 (11).
28. Grant, C., Flaten, D., Tenuta, M., Malhi, S., & Akinremi, W. (2013). The effect of rate and Cd concentration of repeated phosphate fertilizer applications on seed Cd concentration varies with crop type and environment. Plant and Soil, 372 (1–2), 221–233.
29. Grant, C.A., Clarke, J.M., Duguid, S., & Chaney, R.L. (2008a). Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ, 390 (2–3), 301–310. doi: 10.1016/j.scitotenv.2007.10.038.
30. Grant, C.A., Clarke, J.M., Duguid, S., & Chaney, R.L. (2008b). Selection and breeding of plant cultivars to minimize cadmium accumulation. The Science of the total environment, 390 (2–3), 301–310.
31. Han, X.Q., Xiao, X.Y., Guo, Z.H., Xie, Y.H., Zhu, H.W., Peng, C., & Qin, L.Y. (2018a). Release of cadmium in contaminated paddy soil amended with NPK fertilizer and lime under water management. Ecotoxicol Environ Saf, 159, 38–45. doi: 10.1016/j.ecoenv.2018.04.049.
32. Han, Y.S., Wu, M.Y., Hao, L.H., & Yi, H.L. (2018b). Sulfur dioxide derivatives alleviate cadmium toxicity by enhancing antioxidant defence and reducing Cd2+ uptake and translocation in foxtail millet seedlings. Ecotoxicol Environ Saf, 157. doi: 10.1016/j.ecoenv.2018.03.084.
33. Harris, N.S., & Taylor, G.J. (2013). Cadmium uptake and partitioning in durum wheat during grain filling. BMC Plant Biol, 13, 103.
34. Hart, J.J., Welch, R.M., Norvell, W.A., Sullivan, L.A., & Kochian, L.V. (1998). Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol, 116 (4), 1413–1420.
35. Hawrylak-Nowak, B., Dresler, S., & Matraszek, R. (2015). Exogenous malic and acetic acids reduce cadmium phytotoxicity and enhance cadmium accumulation in roots of sunflower plants. Plant Physiol Biochem, 94, 225–234.
36. He, Y., Yang, Z., Li, M., Jiang, M., Zhan, F., Zu, Y., Li, T., & Zhao, Z. (2017). Effects of a dark septate endophyte (DSE) on growth, cadmium content, and physiology in maize under cadmium stress. Environ Sci Pollut Res Int, 24 (22), 18494–18504. doi: 10.1007/s11356-017-9459-6.
37. Hu, P.J., Huang, J.X., Ouyang, Y.N., Wu, L.H., Song, J., Wang, S.F., Li, Z., Han, C.L., Zhou, L.Q., Huang, Y.J., Luo, Y.M., & Christie, P. (2013). Water management affects arsenic and cadmium accumulation in different rice cultivars. Environmental Geochemistry and Health, 35 (6), 767–778.
38. Hu, Y., Lu, L.L., Tian, S.K., Li, S.M., Liu, X.X., Gao, X.Y., Zhou, W.W., & Lin, X.Y. (2019). Cadmium-induced nitric oxide burst enhances Cd tolerance at early stage in roots of a hyperaccumulator Sedum alfredii partially by altering glutathione metabolism. Science of the Total Environment, 650 (P2), 2761–2770. doi: 10.1016/j.scitotenv.2018.09.269.
39. Huang, B.Y., Zhao, F.J., & Wang, P. (2021). The relative contributions of root uptake and remobilization to the loading of Cd and As into rice grains: Implications in simultaneously controlling grain Cd and As accumulation using a segmented water management strategy. Environ Pollut, 293, 118497.
40. Hussain, B., Umer Muhammad, J., Li, J.M., Ma, Y.B., Abbas, Y., Ashraf Muhammad, N., Tahir, N., Ullah, A., Gogoi, N., & Farooq, M. (2021). Strategies for reducing cadmium accumulation in rice grains. Journal of Cleaner Production, 286. doi: 10.1016/J.JCLEPRO.2020.125557.
41. Ishikawa, S. (2020). Mechanisms of cadmium accumulation in rice grains and molecular breeding for its reduction. Soil Science and Plant Nutrition, 66 (1), 28–33. doi: 10.1080/00380768.2020.1719806.
42. Jan, A.U., Hadi, F., Shah, A., Ditta, A., Nawaz, M.A., & Tariq, M. (2021). Plant growth regulators and EDTA improve phytoremediation potential and antioxidant response of Dysphania ambrosioides (L.) Mosyakin & Clemants in a Cd-spiked soil. Environ Sci Pollut Res Int, 28 (32), 43417–43430.
43. Jaouani, K., Karmous, I., Ostrowski, M., Ferjani, E. E., Jakubowska, A., & Chaoui, A. (2018). Cadmium effects on embryo growth of pea seeds during germination: Investigation of the mechanisms of interference of the heavy metal with protein mobilization-related factors. J Plant Physiol, 226, 64–76.
44. Jun, L., Wei, H., Aili, M., Juan, N., Hongyan, X., Jingsong, H., Yunhua, Z., & Cuiying, P. (2020). Effect of lychee biochar on the remediation of heavy metal-contaminated soil using sunflower: A field experiment. Environmental Research, 188.
45. Kang, Z.M., Zhang, W.Y., Qin, J.H., Li, S., Yang, X., Wei, X., & Li, H.S. (2020). Yield advantage and cadmium decreasing of rice in intercropping with water spinach under moisture management. Ecotoxicol Environ Saf, 190 (c), 110102. doi: 10.1016/j.ecoenv.2019.110102.
46. Kensuke, T., Shu, F., Toru, F., Tadakatsu, Y., & Hiroaki, H. (2007). Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.). Soil Science and Plant Nutrition, 53 (1), 72–77. doi: 10.1111/j.1747-0765.2007.00116.x.
47. Khanboluki, G., Hosseini, H. M., Holford, P., Moteshare Zadeh, B., & Milham, P.J. (2018). Effect of elevated atmospheric CO2 concentration on growth and physiology of wheat and sorghum under cadmium stress. Communications in Soil Science and Plant Analysis, 49 (22), 1–16.
48. Kun, L., Chenliang, C., Yibing, M., Dechun, S., & Jumei, L. (2019). Identification of cadmium bioaccumulation in rice (Oryza sativa L.) by the soil-plant transfer model and species sensitivity distribution. Science of the Total Environment, 692.
49. Li, H., Luo, N., Li, Y.W., Cai, Q.Y., Li, H.Y., Mo, C.H., & Wong, M.H. (2017). Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures. Environmental Pollution, 224, 622–630.
50. Li, X.M., Zhang, L.H., Li, Y.Y., Ma, L.J., Bu, N., & Ma, C.Y. (2012). Changes in photosynthesis, antioxidant enzymes and lipid peroxidation in soybean seedlings exposed to UV-B radiation and/or Cd. Plant and Soil, 352 (1–2), 377–387. doi: 10.1007/s11104-011-1003-8.
51. Li, Y.M., Chaney, R.L., Schneiter, A.A., & Miller, J.F. (1995). Genotype variation in kernel cadmium concentration in sunflower germplasm under varying soil conditions. Crop Science, 35 (1).
52. Liñero, O., Cornu, J.Y., Candaudap, F., Pokrovsky, O.S., Bussière, S., Coriou, C., Humann-Guilleminot, T., Robert, T., Thunot, S., & Diego, A.D. (2016). Short-term partitioning of Cd recently taken up between sunflowers organs (Helianthus annuus) at flowering and grain filling stages: effect of plant transpiration and allometry. Plant & Soil, 408 (1–2), 1–19.
53. Liu, C.L., Ding, S.L., Zhang, A.P., Hong, K., Jiang, H.Z., Yang, S.L., Ruan, B.P., Zhang, B., Dong, G.J., Guo, L.B., Zeng, D., Qian, Q., & Gao, Z.Y. (2020). Development of nutritious rice with high zinc/selenium and low cadmium in grains through QTL pyramiding. Journal of Integrative Plant Biology, 62 (3), 349–359.
54. Liu, D., Zheng, K., Wang, Y., Zhang, Y., Lao, R., Qin, Z., Li, T., & Zhao, Z. (2022). Harnessing an arbuscular mycorrhizal fungus to improve the adaptability of a facultative metallophytic poplar (Populus yunnanensis) to cadmium stress: Physiological and molecular responses. J Hazard Mater, 424 (Pt B), 127430.
55. Liu, Y., Liu, K., Li, Y., Yang, W.Q., Wu, F.Z., Zhu, P., Zhang, J., Chen, L.H., Gao, S., & Zhang, L. (2016). Cadmium contamination of soil and crops is affected by intercropping and rotation systems in the lower reaches of the Minjiang River in south-western China. Environmental Geochemistry and Health, 38 (3), 811–820. 56. Luo, L., Ma, Y., Zhang, S., Wei, D., & Zhu, Y. G. (2009). An inventory of trace element inputs to agricultural soils in China. J Environ Manage, 90 (8), 2524–2530.
57. Lv, W.J., Yang, L.F., Xu, C.F., Shi, Z. q., Shao, J. s., Xian, M., & Chen, J. (2017). Cadmium disrupts the balance between hydrogen peroxide and superoxide radical by regulating endogenous hydrogen sulfide in the root tip of Brassica rapa. Frontiers in Plant Science, 8, 232. doi: 10.3389/fpls.2017.00232.
58. Lv, X., Fang, Y., Zhang, L., Zhang, W., & Xue, D. (2019). Effects of melatonin on growth, physiology and gene expression in rice seedlings under cadmium stress. Phyton, 88 (2), 91–100.
59. Maria, S.D., Puschenreiter, M., & Rivelli, A.R. (2013). Cadmium accumulation and physiological response of sunflower plants to Cd during the vegetative growing cycle. Plant, Soil and Environment (Czech Republic), 59 (6), 254–261.
60. Miyadate, H., Adachi, S., Hiraizumi, A., Tezuka, K., Nakazawa, N., Kawamoto, T., Katou, K., Kodama, I., Sakurai, K., Takahashi, H., Satoh-Nagasawa, N., Watanabe, A., Fujimura, T., & Akagi, H. (2011). OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol, 189 (1), 190–199.
61. Monu, Arora, Bala, Kiran, Shweta, Rani, Anchal, Rani, Barinder, & Kaur. (2008). Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry, 111 (4), 811–815.
62. Morrow, H. (2010). Cadmium and Cadmium Alloys. Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons. pp. 1–36. doi: 10.1002/0471238961.0301041303011818.a01.pub.
63. Murtaza, G., Javed, W., Hussain, A., Wahid, A., Murtaza, B., & Owens, G. (2015). Metal uptake via phosphate fertilizer and city sewage in cereal and legume crops in Pakistan. Environmental Science and Pollution Research, 22 (12).
64. Pan, X., Li, Y., Liu, W., Liu, S., Min, J., Xiong, H., Dong, Z., Duan, Y., Yu, Y., & Li, X. (2020). QTL mapping and candidate gene analysis of cadmium accumulation in polished rice by genome-wide association study. Sci Rep, 10 (1), 11791.
65. Pessôa, G.S., Lopes Júnior, C.A., Madrid, K.C., & Arruda, M.A.Z. (2017). A quantitative approach for Cd, Cu, Fe and Mn through laser ablation imaging for evaluating the translocation and accumulation of metals in sunflower seeds. Talanta, 167, 317–324. doi: 10.1016/j.talanta.2017.02.029.
66. Qi, K., Ren, L., Bai, Z., Yan, J., Deng, X., Zhang, J., Peng, Y., & Li, X. (2020). Detecting cadmium during ultrastructural characterization of hepatotoxicity. J Trace Elem Med Biol, 62, 126644.
67. Qian, H., Li, J., Sun, L., Chen, W., Sheng, G.D., Liu, W., & Fu, Z. (2009). Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquat Toxicol, 94 (1), 56–61.
68. Rabêlo, F.H.S., Lavres, J., Pinto, F. A., & Alleoni, L.R.F. (2021). Photosynthetic parameters and growth of rice, lettuce, sunflower and tomato in an entisol as affected by soil acidity and bioaccumulation of Ba, Cd, Cu, Ni, and Zn. Arch Environ Contam Toxicol, 81 (1), 91–106.
69. Rehab, A.E.D., & Ibrahim, A.H. (2020). The Alleviative Effects of Salicylic Acid on Physiological Indices and Defense Mechanisms of Maize (Zea Mays L. Giza 2) Stressed with Cadmium. Environmental Processes: An International Journal, 7 (3), 873–884. doi: 10.1007/s40710-020-00448-1.
70. Reyes-Hinojosa, D., Lozada-Pérez, C.A., Zamudio Cuevas, Y., López-Reyes, A., Martínez-Nava, G., Fernández- Torres, J., Olivos-Meza, A., Landa-Solis, C., Gutiérrez-Ruiz, M.C., Rojas Del Castillo, E., & Martínez-Flores, K. (2019). Toxicity of cadmium in musculoskeletal diseases. Environ Toxicol Pharmacol, 72, 103219. doi: 10.1016/j.etap.2019.103219.
71. Sadiq, R., Maqbool, N., Bader-Un-Nisa, ensp, Parveen, K., & Hussain, M. (2019). Vulnerability of sunflower germination and metal translocation under heavy metals contamination. American Journal of Plant Sciences, 10 (5).
72. Sahito, Z.A., Zehra, A., Chen, S., Yu, S., Tang, L., Ali, Z., Hamza, S., Irfan, M., Abbas, T., He, Z., & Yang, X. (2022). Rhizobium rhizogenes-mediated root proliferation in Cd/Zn hyperaccumulator Sedum alfredii and its effects on plant growth promotion, root exudates and metal uptake efficiency. J Hazard Mater, 424 (Pt B), 127442. doi: 10.1016/j. jhazmat.2021.127442.
73. Saidi, I., Guesmi, F., Kharbech, O., Hfaiedh, N., & Djebali, W. (2021). Gallic acid improves the antioxidant ability against cadmium toxicity: Impact on leaf lipid composition of sunflower (Helianthus annuus) seedlings. Ecotoxicol Environ Saf, 210, 111906. doi: 10.1016/j.ecoenv.2021.111906.
74. Saraswat, S., & Rai, J.P.N. (2011). Complexation and detoxification of Zn and Cd in metal accumulating plants. Reviews in Environmental Science and Bio/Technology, 10 (4), 327–339. doi: 10.1007/s11157-011-9250-y.
75. Shahabivand, S., Parvaneh, A., & Aliloo, A.A. (2017). Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity. Ecotoxicol Environ Saf, 145.
76. Shahid, M., Dumat, C., Khalid, S., Niazi, N. K., & Antunes, P.M.C. (2017). Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. rev environ contam toxicol, 241, 73–137. doi: 10.1007/398_2016_8.
77. Shimpei, U., Shinsuke, M., Masato, K., Akira, K., Tomohito, A., & Satoru, I. (2009). Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 60 (9).
78. Simmons, R.W., Pongsakul, P., Saiyasitpanich, D., & Klinphoklap, S. (2005). Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in Thailand: implications for public health. Environ Geochem Health, 27 (5–6), 501–511.
79. Singh, P., Singh, I., & Shah, K. (2020). Alterations in antioxidative machinery and growth parameters upon application of nitric oxide donor that reduces detrimental effects of cadmium in rice seedlings with increasing days of growth. South African Journal of Botany, 131 (c), 283–294.
80. Song, W., Chen, B. M., & Liu, L. (2013). Soil heavy metal pollution of cultivated land in China. Research of Soil and Water Conservation.
81. Sterckeman, T., Douay, F., Proix, N., & Fourrier, H. (2000). Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Environ Pollut, 107 (3), 377–389. doi: 10.1016/s0269-7491(99)00165-7.
82. Sun, H., Chen, Z. H., Chen, F., Xie, L., Zhang, G., Vincze, E., & Wu, F. (2015). DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains. BMC Plant Biol, 15, 259.
83. Tang, L., Hamid, Y., Zehra, A., Shohag, M.J.I., He, Z.L., & Yang, X.E. (2020). Endophytic inoculation coupled with soil amendment and foliar inhibitor ensure phytoremediation and argo-production in cadmium contaminated soil under oilseed rape-rice rotation system. Science of the Total Environment, 748.
84. Tang, S., Xi, L., Zheng, J., & Li, H. (2003). Response to elevated CO2 of Indian mustard and sunflower growing on copper contaminated soil. Bull Environ Contam Toxicol, 71 (5), 988–997. doi: 10.1007/s00128-003-0224-9.
85. Templeton, D.M., & Liu, Y. (2010). Multiple roles of cadmium in cell death and survival. Chem Biol Interact, 188 (2), 267–275.
86. Ueno, D., Yamaji, N., Kono, I., Huang, C.F., Ando, T., Yano, M., & Ma, J.F. (2010). Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA, 107 (38), 16500–16505. doi: 10.1073/pnas.1005396107.
87. Wang, C., Zhang, Y., Liu, Y., Xu, H., Zhang, T., Hu, Z., Lou, L., & Cai, Q. (2020). Ectopic expression of wheat aquaglyceroporin TaNIP2;1 alters arsenic accumulation and tolerance in Arabidopsis thaliana. Ecotoxicol Environ Saf, 205.
88. Wang, L., Zhou, Q., Ding, L., & Sun, Y. (2008). Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. J Hazard Mater, 154 (1–3), 818–825.
89. Wang, M.E., Peng, C., & Chen, W.P. (2015). Effects of rice cultivar and typical soil improvement measures on the uptake of Cd in rice grains. Environmental Science and Pollution Research, 36 (11), 4283–4290.
90. Watai, H., Miyazaki, T., Fujikawa, T., & Mizoguchi, M. (2004). Phytoremediation of soils contaminated by cadmium. Masui the Japanese Journal of Anesthesiology.
91. Wu, Z., Zhao, X., Sun, X., Tan, Q., Tang, Y., Nie, Z., Qu, C., Chen, Z., & Hu, C. (2015a). Antioxidant enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress. Chemosphere, 138, 526–536. Chemosphere, 2015.06.080.
92. Wu, Z.C., Zhao, X.H., Sun, X.C., Tan, Q.L., Tang, Y.F., Nie, Z.J., Qu, C.J., Chen, Z.X., & Hu, C.X. (2015b). Antioxidant enzyme systems and the ascorbate -glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress. Chemosphere, 138, 526–536.
93. Xin, J.P., Zhang, Y., & Tian, R.N. (2018). Tolerance mechanism of Triarrhena sacchariflora (Maxim.) Nakai. seedlings to lead and cadmium: Translocation, subcellular distribution, chemical forms and variations in leaf ultrastructure. Ecotoxicol Environ Saf, 165, 611–621.
94. Yan B.F., Nguyen C., Pokrovsky O.S., Candaudap F., Coriou C., Bussière S., Robert T., Cornu J.Y. (2019): Cadmium allocation to grains in durum wheat exposed to low Cd concentrations in hydroponics. Ecotoxicology and environmental safety, 184: 109592.
95. Yan, Y., Sun, Q., Yang, J., Zhang, X., & Guo, B. (2021). Source attributions of Cadmium contamination in rice grains by Cadmium isotope composition analysis: A field study. Ecotoxicol Environ Saf, 210, 111865.
96. Yang, J., Guo, H., Ma, Y., Wang, L., Wei, D., & Hua, L. (2010). Genotypic variations in the accumulation of Cd exhibited by different vegetables. J Environ Sci (China), 22 (8), 1246–1252. doi: 10.1016/s1001-0742(09)60245-x.
97. Yu, H., Wu, Y., Huang, H., Zhan, J., Wang, K., & Li, T. (2020). The predominant role of pectin in binding Cd in the root cell wall of a high Cd accumulating rice line (Oryza sativa L.). Ecotoxicol Environ Saf, 206, 111210.
98. Yuan, K., Wang, C. R., Zhang, C.B., Huang, Y.C., Wang, P.P., & Liu, Z.Q. (2020). Rice grains alleviate cadmium toxicity by expending glutamate and increasing manganese in the cadmium contaminated farmland. Environmental Pollution, 262, 114236. doi: 10.1016/j.envpol.2020.114236.
99. ZaidImdad, U., Zheng, X., & Li, X.F. (2018). Breeding Low-Cadmium Wheat: Progress and Perspectives. Agronomy, 8 (11), 249–249.
100. Zhang, F.G., Xiao, X., & Wu, X.M. (2020). Physiological and molecular mechanism of cadmium (Cd) tolerance at initial growth stage in rapeseed (Brassica napus L.). Ecotoxicol Environ Saf, 197 (c), 110613.
101. Zhao, G., Zhong, P., Chen, X., Liu, L., Li, J., & Zhao, C. (2011). Recent Progress and the Development Strategy of Sunflower in China. Agricultural Engineering. 102. Zhou, W., & Qiu, B. (2005). Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Science, 169 (4).
103. Zhou, Y.M., Long, S.S., Li, B.Y., Huang, Y.Y., Li, Y.J., Yu, J.Y., Du, H.H., Khan, S., & Lei, M. (2020). Enrichment of cadmium in rice (Oryza sativa L.) grown under different exogenous pollution sources. Environ Sci Pollut Res Int, 27 (35), 44249–44256. doi: 10.1007/s11356-020-10282-5.
104. Zhu, Y., Wang, H., Lv, X., Zhang, Y., & Wang, W. (2020). Effects of biochar and biofertilizer on cadmium-contaminated cotton growth and the antioxidative defense system. Sci Rep, 10 (1), 20112.
Published
2022-05-24
How to Cite
Yuanzhi, F., & Trotsenko, V. I. (2022). WAYS OF THE CADMIUM ACCUMULATION MONITORING IN SUNFLOWER AND OTHER CROPS: OVERVIEW. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 46(4), 89-96. https://doi.org/10.32845/agrobio.2021.4.13