OPTIMIZATION OF AGROTECHNICAL MEASURES FOR GROWING CROPS IN THE AREA OF THE INGULETS IRRIGATION SYSTEM
Abstract
The results of many years of research on the humus content on irrigated lands of the Ingulets irrigation system with the use of water with high mineralization are summarized. The manifestation of dehumidification of dark chestnut soils due to insufficient receipt of crop residues and organic fertilizers, increasing the share of waste crops, etc., which requires the introduction of a set of ecological and reclamation measures to prevent soil degradation and erosion. Analysis of crop yield data on average for 2016–2020 shows that the best conditions for crop formation in the experiment were created with a differentiated tillage system with one gap for crop rotation (option 4), and with increased doses of fertilizers that per 1 ha of crop rotation area provided the highest productivity, which was 15.61 t/ha for corn, sorghum – 8.71, winter wheat – 6.88, and only for soybeans the best conditions this year were created for option 1 – 3.79 t/ha. Disc tillage to a depth of 12–14 cm in the system of shallow single-depth tillage in crop rotation (option 3) led to a decrease in yield by 33.7 %, and without fertilizers to the lowest yield in the experiment of 3.07 t/ha. Fertilization with doses of N120 and N180 increased the yield on average by factor B («dose of fertilizer») by 166.4 and 233,3 %. Estimation of crop rotation productivity on average for 2016–2020 shows that the best conditions for productivity formation are created by a differentiated tillage system with one gap for crop rotation (option 4) and with increased doses of fertilizers per 1 ha of crop rotation area provided the highest productivity, 7.96 t/ha. The highest profit from 1 ha of crop rotation area (43214.5 UAH/ha) was obtained against the background of N120P60 feeding with differentiated tillage (option 4). In the same case, the highest level of profitability was determined – 212.5 %. The lowest level of profitability was observed for disk cultivation in the system of shallow single-depth tillage in crop rotation (option 3) on an unfertilized background – 14.7%. The yield of gross energy of crops per 1 ha of crop rotation area, depending on the methods of basic tillage and fertilizer doses in the unfertilized version and against the nutrient background N82,5P60 on gross energy yield was the highest in the system of differentiated tillage (option 4) and amounted to 76.0 and 167.9 GJ/ha.
References
2. Beltrao, J., Bekmirzaev, G., & Asher, J. B. (2021). Linear Relationship of a Soil Total Water Potential Function and Relative Yield – A Technique to Control Salinity and Water Stress on Golf Courses and Other Irrigated Fields. Agronomy, 11(10), 1–16; doi: 10.3390/agronomy11101916
3. DalCorso, G., Fasani, E., Manara, A., Visioli, G., & Furini, A. (2019). Heavy metal pollutions: state of the art and innovation in phytoremediation. Int. J. Mol. Sci., 20, 12–16. doi: 10.3390/ijms20143412
4. Fasani, E., Manara, A., Martini, F., Furini, A., & DalCorso, G. (2018). The potential of genetic engineering of plants for theremediation of soils contaminated with heavy metals. Plant, Cell and Environment, 41, 1201–1232. doi: 10.1111/pce.1296
5. Gamajunov, V. E. (1997). Pochvovedenie [Soil science]. Herson. Kolos.
6. Gornostal, R. (2019). The Effect of Prolonged Irrigation on Soil-amelioration State of the Aley River Steppe. KnE Life Sciences, 347–361. doi: 10.18502/kls.v4i14.5621.
7. Hamaiunova, V. V., Sydorenko, O. I., & Babanin, V. V. (2008). Laboratornyi praktykum z ahrokhimii [Laboratory workshop on agrochemistry]. Kherson (in Ukrainian).
8. Hasan, M. M., Uddin, M. N., Ara-Sharmeen, F. I, Alharby, H., Alzahrani, Y., & Hakeem, K. R. (2019). Assisting phytoremediation of heavy metals using chemical amendments. Plants, 8, 295. doi: 10.3390/ijms20143412
9. Hnatenko, O. F., Kapshtyk, M. V., Petrenko, L. R., & Vitvytskyi, S. V. (2005). Gruntoznavstvo z osnovamy heolohii [Soil science with the basics of geology]. Oranta, Kyiv. (in Ukrainian).
10. Huang P., Kang Y., Wan Sh., Li X. (2021). Amelioration of takyric solonetz using drip irrigation with soil-waterredistribution medium. Irrigation and Drainage, 78. doi: 10.1002/ird.2644
11. Jacob, J. M., Karthik, C., Saratale, R. G., Kumar, S. S., Prabakar, D., & Kadirvelu, K. (2018). Biological approaches to tackle heavy metal pollution: a survey of literature. Jorn. Environ. Manage, 217, 56–70. doi: 10.1016/j.jenvman.2018.03.077
12. Javed, M. T., Tanwir, K., Akram, M. S., Shahid, M., Niazi, N. K., & Lindberg, S. (2019). Chapter 20 – Phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes. Cadmium Toxicity and Tolerance in Plants, 495–529. doi: 10.1016/B978-0-12-814864-8.00020-6
13. Kireycheva, L.V. (2018). Evaluation of efficiency of land reclamation in Russia. Journal of Agriculture and Environment, 3 (7). doi: 10.23649/jae.2018.3.7.1
14. Kiryluk, A. (2019). The Influence of Drainage Devices and Post-Bog Soil Changes on Water Retention in Drained Lower Supraśl River. Journal of Ecological Engineering Received, 20 (8), 120–128. doi: 10.12911/22998993/110788
15. Kozlenko, Ye. V., Morozov, O. V., & Morozov, V. V. (2020). Inhuletska zroshuvalna systema: stan, problemy ta perspektyvy rozvytku [Ingulets irrigation system: state, problems and prospects of development]. Ailant. Kherson. 204 (in Ukrainian).
16. Krykunov, V. H. (1993). Grunty i yikh rodiuchist [Soils and their fertility]. Kyiv : Vyshcha shkola (in Ukrainian).
17. Li, F. Z., Huang, Z. B., Ma, Y., & Sun, Z. J. (2018). Improvement Effects of Different Environmental Materials on Coastal Saline-Alkali Soil in Yellow River Delta. Materials Science Forum, 913, 879–886. doi: 10.4028/www.scientific.net/MSF.913.879
18. Liseckij, F. N., Pichura, V. I., & Breus, D. S. (2017). Ocenka i prognoz izmenenij soderzhanija gumusa v stepnyh pochvah s ispol’zovaniem geoinformacionnyh i nejrotehnologij [Assessment and forecast of changes in the humus content in steppe soils using geoinformation and neurotechnologies]. Rossijskaja sel’skohozjajstvennaja nauka, 1, 24–29 (in Russian).
19. Mahmoodi-Eshkaftakia, M., & Rafie Rafieeb M. (2020). Optimization of irrigation management: A multi-objective approach based on crop yield, growth, evapotranspiration, water use efficiency and soil salinity. Journal of Cleaner Production, 252, 11–19. doi: 10.1016/j.jclepro.2019.119901
20. Morozov, O. V., Morozov, V. V., Pichura, V. I., & Beznitska, N. V. (2018) Formuvannia pokaznykiv rodiuchosti meliorovanykh gruntiv v umovakh rehionalnykh zmin klimatu v Pivdennomu rehioni [Formation of indicators of fertility of reclaimed soils in the conditions of regional climate changes in the Southern region]. Tavriiskyi naukovyi visnyk. Silskohospodarski nauky, 100, 2, 236–244 (in Ukrainian).
21. Morozov, A., Morozov, V., Lazer, P., & Beznitska, N. (2018). Formation of fertility and productivity indices of reclaimed soils under conditions of regional climate change of the south of Ukraine. Book of Proceedings. Green Room and University of Montenegro. Green Room Sessions 2018 International GEA (Geo Eco-Eco Agro) Conferece. Podgorica, Montenegro, 152–163.
22. Morozov, O. V., Morozov, V. V., Kabachenko, A. I., & Kozlenko, Ye. V. (2019). Metodychni pidkhody shchodo otsinky yakosti poverkhnevykh ta gruntovykh vod u systemi ekoloho-melioratyvnoho monitorynhu (na prykladi Inhuletskoho zroshuvanoho masyvu) [Methodical approaches to assessing the quality of surface and groundwater in the system of ecological and reclamation monitoring (on the example of Ingulets irrigated area)]. Vodni bioresursy ta akvakultura. Kherson : OLDI-PLIuS, 2, 107–120 (in Ukrainian).
23. Morozov, V. V., Morozov, O. V., Chenina, N. O., & Kozlenko, Ye. V. (2018). Obgruntuvannia kryteriiv yakosti polyvnoi vody dlia gruntiv Inhuletskoho zroshuvanoho masyvu [Substantiation of irrigation water quality criteria for soils of Ingulets irrigated array]. Tavriiskyi naukovyi visnyk, 99, 88–93 (in Ukrainian).
24. Nosko B. S., Medvedev V. V., Truskaveckij R. S., Chesnjak G. Ja. (1988). Pochvy Ukrainy i povyshenie ih plodorodija [Soils of Ukraine and increasing their fertility]. T. 2: Produktivnost’ pochv, puti ee povyshenija, melioracija, zashhita pochv ot jerozii i upravlenie plodorodiem. Kiev : Urozhaj (in Russian).
25. Schmer, M. R., Jin, V. L., Ferguson, R. B., & Wienhold, B. J. (2020). Irrigation, carbon amelioration, nitrogen, and stover removal effects on continuous corp. Agronomy Journal, 6, 2506–2518. doi: 10.1002/agj2.20192.
26. Shahane, A. A., & Shivay, Y. S. (2021). Soil Health and Its Improvement Through Novel Agronomic and Innovative Approaches. Frontiers Agronomy, 3, 1–3. doi: 10.3389/fagro.2021.680456
27. Suleymanova, R. R., Gizatshinab, G. M., & Gabbasovaa, I. M. (2021). Suitability of Agrochernozem Soils for Irrigation Amelioration in the Southern Forest–Steppe Zone of the Republic of Bashkortostan. Arid Ecosystems, 11(2), 186–192. doi: 10.1134/S2079096121020141
28. Suman, J., Uhlik, O., Viktorova, J., and Macek, T. (2018). Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci. 9:1476. doi: 10.3389/fpls.2018.01476
29. Tadayon, M.S., & Hosseini, S.M. (2020). Effect of spread and shallow irrigation wetted area and application of organic mulch on citrus decline amelioration. Advances in Horticultural Science, 34 (2), 213221. doi: 10.13128/ahsc7770
30. Tahat, M. M., Alananbeh, K. M., Othman, Y. A., & Lescovar, D. I. (2020). Soil health and sustainable agriculture. Sustainability, 12, 48–59. doi: 10.3390/su12124859
31. Vozhehova R. A., Maliarchuk M. P., Morozov O. V., Bidnyna I. O. (2018). Adaptatsiia ahrotekhnolohii do zmin klimatu: hruntovo – ahrokhimichni aspekty [Adaptation of agrotechnologies to climate change: soil – agrochemical aspects]. Kharkiv: Stylna typohrafiia (in Ukrainian).
32. Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, F., & Chen, Z. (2020). Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci., 11, 1–15. doi: 10.3389/fpls.2020.00359