ISOLATION AND SCREENING OF METHYL DISULFURON- DEGRADING MICROORGANISMS
Abstract
The widespread use of herbicides has caused significant pollution to the soil environment, which has seriously endangered people’s life and development. Therefore, there is an urgent need for an effective method to control environmental soil pollution, and the degradation of residual pesticides by microorganisms is an effective bioremediation method developed in recent years. Taking the soil treated with methyl disulfuron as the research subjects, the microbial strains with high degradation effect on methyl disulfuron were isolated by plate gradient dilution method, the isolated strains were enriched and cultured, medicated and cultured, and soil colonization test, so as to determine the effect of methyl disulfuron on the strains. The results showed that a bacterium J20191108-1 and a fungus Tr20191108-E were isolated from soil, and no actinomycetes were isolated. The bacterial colony is milky white, the surface is wet and smooth, and the fungus is preliminarily identified as Trichoderma. The bioaccumulation test of bacteria J20191108-1 showed that there was no significant difference in the external morphology and number of bacterial colonies growing on the two media with and without chemicals, in the soil colonization test, the bacteria grew better in the medium with herbicides. Trichoderma Tr20191108-Ecultured on plates with different drug contents had little effect on colony growth. Fungus grew all over the plate after 2 days of culture. The variance analysis of the spore yield of the fungus by SPSS showed that the p value was 0.163 > 0.05, indicating that there was no significant difference between the concentration of methyl disulfuron and the spore yield of the fungus. It can be seen that the concentration of methyl disulfuron has little effect on the external morphology of bacteria, but the concentration of pesticide has a certain effect on the growth rate of fungi.
References
2. Brown, H. M., Joshi, M. M., Van, A. T., Carski, T. H., & Doughty, J. (1997). Degradation of Thifensulfuron Methyl in soil:Role of Microbial Carboxyesterase Activity. Journal of Agricultural&Food Chemistry, 45(3), 955–961. doi: 10.1021/jf9604145
3. Cai, D. M., Huang, W., Ren, Y. L., Xue, Y. Z., Ren, Z. Z., Liu, H. J., & Shao, H. X. (2020). Study on Mitigation Measures of Wheat after Spraying SigMa.Tillage and Cultivation. 40(1), 24–26. doi: 10.13605/j.cnki.52-1065/s.2020.01.007
4. Cheng, J., Du, H. L., Zhang, D. B., & Wang, W. (2017). Isolation and Identification of tetracycline degrading bacteria. Journal of Nuclear Agricultural Sciences, 31(5), 884–888. doi: 10.11869/j.issn.100-8551.2017.05.0884
5. D. Chen., & G. A. Zentmyer. (2018). Production of Sporangia by Phytophthora Cinnamomi in Axenic Culture, Brief Articles, 62(2), 397–402. doi: 10.1080/00275514.1970.12018977
6. Das, N., & Chandran, P. (2011). Microbial Degradation of Petroleum Hydrocarbon Contaminants:An Overview. Biotechnology Research International, 10, 1–13. doi: 10.4061/2011/941810.
7. Dinelli, G., Vicari, A., Bonetti, A., & Catizone, P. (1997). Hydrolytic Dissipation of Four Sulfonylurea Herbicides. J.Agric. Food Chem, 45, 1940–1945. doi: 10.1021/jf960649g
8. Dong, H. F. (2020). Research status and trend of contaminated soil remediation technology. Shanxi chemical industry, 1, 163–164, doi: 10.16525/j.cnki.cn14-1109/tq.2020.01.59
9. Hooda, R., Bhardwaj, N. K., & Singh, P. (2015). Screening and Identification of Ligninolytic Bacteria for the Treatment of Pulp and Paper Mill Effluent. Water Air Soil Pollut, 226(9), 305. doi:10.1007/s11270-015-2535-y
10. Hu, X. (2020). Research status and trend of contaminated soil remediation technology. New technologies and products in China, 1, 124–125. doi: 10.13612/j.cnki.cntp.2020.02.054
11. Li, S. G., & Li, R. Q. (2008). Research Progress on biodegradation of organophosphorus pesticides. Scientific and technological information development and economy, 18(2), 123–124. doi: 10.3969/j.issn.1005-6033.2008.02.071
12. Li, Y., Li, H. P., & Yang, Z. G. (2020). Study on the growth and degradation characteristics of a strain of methylparaben degrading bacteria. Science and technology wind, 3(10), 176–177. doi: 10.19392/j.cnki.1671-7341.202010158
13. Liang, Z. D. (2020). Research status and contaminated technology. Environment and development, 2, 79–80. doi:10.16647/j.cn15-1369/x.2020.02.045
14. Paporisch. A., Laor, Y., Rubin, R., & Eizenberg, H. (2020). Effect of Repeated Application of Sulfonylurea Herbicides on Sulfosulfuron Dissipation Rate in Soil. Agronomy, 10(11), 1724. doi: 10.3390/agronomy10111724
15. Shen, Z.H., Wang, Y., Li, H. C., Mao, X. X., Feng, F. Y., Ren, L. Y., & Yu, X. Y. (2020). Isolation,identification and degradation characteristics of a fluconazole degrading strain. Jiangsu Agricultural Sciences, 48(4), 273–278. doi: 10.15889/j.issn.1002-1302.2020.04.049
16. Singh, A., Kewat, M. L., & Sondhia, S. (2018). Studies on the effect of day time application of herbicide mesosulfuronmethyl on soil microbial communities of wheat rhizosphere. Journal of envirenmental Biology, 39(1), 59–65. doi: 10.22438/jeb/39/1/mrn-562
17. Singh, B. K., & Walker, A. (2010). Microbial degradation of organophosphorus compounds. Fems Microbiology Reviews, 30(3), 428–471. doi: 10.1111/j.1574-6976.2006.00018.x
18. Su, Z. J., Liu, Y. T., Xu, C. J., Ding, H., Yu, L. X., & Ai, X. H. (2019). Isolation,identification and degradation characteristica of a deltamethrin-degrading bacterial strain. Freshwater Fisheries, 49(1), 98–106. doi: 10.13721/j.cnki.dsyy.2019.01.018
19. Sun, Z. N., Cui, H. C., Wang, H. L., Ren, X. B., & Liu, H. R. (2017). Screening of sporangium producing medium and induction method of Phytophthora. Science Technology and Engineering, 17(19), 18–23. doi: 10.3969/j.issn.1671-1815.2017.19.004
20. Tang, J. M. (2008). Malignant gramineous weeds and their suitable herbicides in wheat field of Jiangsu Province. Weed science, 3, 75–77. doi: 10.19588/j.issn.1003-935x.2008.03.026
21. Tatiane, M. S., Maria, I. S., Ander, M. M., Fabiana, D. A., Sonia, A. V. P., Paulo, R. F., Marcelo, D. C., Emanuel, C., Paulo, I. B. C., & Marcos, P. (2007). Degradation of 2, 4-D herbicide by microorganisms isolated. Brazilian Jourmal of Microbiology, 38, 522–525. doi: 10.1590/S1517-83822007000300026
22. Thirunarayanan, K., Zimdahl, R. L., & Smika, D. E. (1985). Chlorsulfuron adsorption and degradation in soil. Weed Science, 33(4), 558–563. doi: 10.1111/j.1365-3180.1985.tb00668.x
23. Tian, C. Y., Xu, J., Dong, F. S., Liu, X. G., Wu, X. H., & Zheng, Y. Q. (2016). Research Progress on microbial degradation of triazole fungicides. Journal of Pesticide Science, 18(2), 141–150. doi: 10.16801/j.issn.1008-7303.2016.0019.
24. Vazan, S., Oveisi, M., & Baziar, S. (2011). Efficiency of mesosulfuron-methyl and clodinafop-propargyl dose for the control of Lolium perenne in wheat. Crop Protection, 30(6), 592–597. doi: 10.1016/j.cropro.2011.01.004
25. Wang, J. W., Zhen, J., Xie, B. E., Liu, Y. Y., & Li, G. J. (2011). Isolation,screening and preliminary identification of organophosphorus degrading bacteria. Henan Science, 29(1), 31–34. doi: 10.3969/j.issn.1004-3918.2011.01.010
26. Wang, X. W. (2017). Research Progress on degradation modes of sulfonylurea herbicides in soil. Journal of Shandong Agricultural Engineering College, 34(10), 164–165. doi: 10.15948/j.cnki.37-1500/s.2017.10.081
Wang, X., Sun, S. Y., & Zhang, H. W. (2018). Advances in the research on microbial degradation of sulfonylurea herbicides. Chinese Journal of Ecology, 37(11), 3449–3457. doi:10.13292/j.1000-4890.2018.11.021
Wei, M., & Li, Y. M. (2007). Advance and Prospect of Microorganism Degrading Soil Pesticide. Shandong chemical industry, 3, 15–18. doi: 10.19319/j.cnki.issn.1008-021x.2007.06.006
27. Wu, H. P., & Zheng, F. C. (2007). Research progress of microbial degradation of organophosphorus pesticides. Guangxi Agricultural Science, 38(6), 637–642. doi: 10.3969/j.issn.1004-874X.2008.01.018
28. Xu, J., Li, Y. X., Qiu, L. H., & Pan, C. P. (2009). Biodegradation of pyrazosulfuron-ethyl by three strains of bacteria isolated from contaminated soils. Chemosphere, 74(5), 682–687. Doi: 10.1016/j.chemosphere.2008.09.078
29. Yin, L. B., Liu, Y., Zhang, D. Y., Zhang, S. B., & Zhang, G. M. (2010). Research Progress on Microbial Degradation of Sulfonylurea Herbicides.Microbiology bulletin, 37 (4), 594–600. doi: 10.13344/j.microbiol.china.2010.04.014
30. Ying, F., Xie, M., Wan, F. H., Wang, R., Qiu, W. L., & Li, L. (2007). Isolation and screening of atrazine degrading bacteria. Chinese Journal of Biological Control, 23(4), 368–372. doi: 10.16409/j.cnki.2095-039x.2007.04.017
31. Zabaloy, M. C., & Gomez, M. A. (2014). Isolation and characterization of indigenous 2,4-D herbicide degrading bacteria from an agricultural soil in proximity of Sauce Grande River, Argentina.Ann Microbiol, 64, 969–974. doi: 10.1007/s13213-013-0731-9
32. Zhang, S. J., Yang, G. L., Zheng, Z. S., Chen, Y. D., Wang, L., & Qian, X. (2009). Residue dynamics of methyl disulfuron in wheat and soil,Journal of Agricultural University of Hebei. 32(3), 5. doi: 10.3969/j.issn.1000-1573.2009.03.003
33. Zheng, X. B., & Lu, J. X. (1990). A preliminary study on the stimulation of soil extract to Phytophthora producing Ascomycetes. Journal of Nanjing Agricultural University, 13(4), 125. doi: 10.7685/j.issn.1000-2030.1990.04.025
34. Zhou, H., Wang, D. M., Tan, H. J., Meng, N. C., & Liao, Y. J. (2017). Isolation and screening of a naphthalene degrading bacterium. Journal of Northwest University of Nationalities, 38(4), 36–40. doi: 10.14084/j.cnki.cn62-1188/n.2017.04.009
35. Zhou, J. H., Huang, R. X., Fan, H. X., Tian, S. N., Li, Z. X., Yang, W., Li, T., & Gao, Q. (2016). A Review on the Progresses of Remediation Technologies for Contaminated Soils.Reserach of Soil and Water Conservation, 23(3), 366–372. doi: 10.13869/j.cnki.rswc.2016.03.064
36. Zhou, J. H., Sun, X. W., Hu, F., & Li, H. X. (2013). Isolation,Screening and Identification of Prometryne-Degrading Bacteria and Their Characteristics. Environmental Science, 34(7), 2894–2898. doi: 10.13227/j.hjkx.2013.07.005
37. Zhu, X. K., Yu, A. L., Zhu, Y. Z., & An, L. J. (2012). Isolation and screening of 114 strains of pesticide degrading bacteria from agricultural cultivated soil. Shandong Agricultural Science, 44(6), 88–92. doi: 10.14083/j.issn.1001-4942.2012.06.002