CORRELATION BETWEEN POPULATIONS OF LUMBRICUS TERRESTRIS’S COELOMOCYTES UNDER THE INFLUENCE OF HIGH-VOLTAGE ELECTRIC POWER TRANSMISSION LINES

Keywords: Lumbricus terrestris, coelomocytes, high-voltage electric power transmission lines, stress, biomarkers

Abstract

The importance of searching for new available and demonstrative methods of bioindication is growing nowadays to show the effects of anthropogenic pressure on the natural environment. The literature writes about the negative influence of highvoltage electric power transmission lines on soil mesofauna, decrease in species diversity, and changes in morphological parameters. Lumbricus terrestris is considered to be quite resistant to such influence. However, there is no data about indicators of the immune system of earthworms that live in an electric power transmission lines influence zone. At the same time, factors of cell immunity are recognized as biomarkers of exogenous pressure. We researched the correlation between populations of Lumbricus terrestris’s coelomocytes under the chronic influence of an electromagnetic field that is formed by high-voltage electric power transmission lines. The invasive method was used to extract coelomic fluid from earthworms and prepare samples on a microscope slide with the next staining them with a Pappenheim method. We discovered that granular amebocytes dominated in the coelomic fluid of a control group of animals that were taken from the zone without electric power transmission lines influence. Hyaline amebocytes were the next group in number, and eleocytes had the smallest percentage in a number. The relative number of granular amoebocytes decreased statistically significantly and the relative number of eleocytes increased in the group of earthworms that were taken from the high-voltage electric power transmission lines influence zone. There was noticed a reduced ability to form brown bodies in the experimental group, as in the coelomic fluid found there was a significant number of foreign objects (ciliates, nematodes), which were not phagocytosed. This indicates the inhibition of the effectiveness of phagocytosis by coelomocytes of animals of the experimental group. Lumbricus terrestris are not prone to active migrations, so the selected specimens have been for a long time in the area affected by transmission lines. Thus, high-voltage electric power transmission lines stress the immune system of earthworms, causing redistribution of coelomocyte populations and inhibiting the development of mature granular amebocytes after the possible stress-induced loss of coelomic fluid. The decreased phagocytic potential of coelomocytes is a sign of imbalance of the immune system of Lumbricus terrestris, living in the area of transmission lines. Indicators of cellular immunity of earthworms are effective biomarkers of exposure to electromagnetic radiation generated by highvoltage electric power transmission lines.

References

1. Banovački, Z., & Matavulj, M. (2013). Exposure to extremely low frequency (50 Hz) electromagnetic field changes the survival rate and morphometric characteristics of neurosecretory neurons of the earthworm Eisenia foetida (Oligochaeta) under illumination stress. Archives of Biological Sciences, 65(1), 395–403. doi:10.2298/ABS1301395B
2. Bourdineaud, J. P., Šrut, M., Štambuk, A., Tkalec, M., Brèthes, D., Malarić, K., & Klobučar, G. I. (2017). Electromagnetic fields at a mobile phone frequency (900 MHz) trigger the onset of general stress response along with DNA modifications in Eisenia fetida earthworms. Arhiv za Higijenu Rada i Toksikologiju, 68(2), 142–152. doi:10.1515/aiht-2017-68-2892
3. Duan, X., Fu, X., Song, J., Li, H., Sun, M., Hu, F., Xu, L., & Jiao, J. (2017). Physiological and molecular responses of the earthworm Eisenia fetida to polychlorinated biphenyl contamination in soil. Environmental Science and Pollution Research, 24(22), 18096–18105. doi:10.1007/s11356-017-9383-9
4. Dvořák, J., Roubalová, R., Procházková, P., Rossmann, P., Škanta, F., & Bilej, M. (2016). Sensing microorganisms in the gut triggers the immune response in Eisenia andrei earthworms. Developmental & Comparative Immunology, 57, 67–74. doi: 10.1016/j.dci.2015.12.001
5. Engelmann, P., Hayashi, Y., Bodó, K., Ernszt, D., Somogyi, I., Steib, A., Orban, J., Pollak, E., Nyitrai, M., Nemeth, P., & Molnár, L. (2016a). Phenotypic and functional characterization of earthworm coelomocyte subsets: Linking light scatter-based cell typing and imaging of the sorted populations. Developmental & Comparative Immunology, 65, 41–52. doi:10.1016/j.dci.2016.06.017
6. Engelmann, P., Hayashi, Y., Bodó, K., & Molnár, L. (2016b). New aspects of earthworm innate immunity: Novel molecules and old proteins with unexpected functions. In Lessons in immunity (pp. 53–66). Academic Press. doi: 10.1016/B978-0-12-803252-7.00004-7
7. Gautam, A., Ray, A., Manna, S., Sarkar, M. P., Ghosh, A. R., Ray, M., & Ray, S. (2020). Shift in phagocytosis, lysosomal stability, lysozyme activity, apoptosis and cell cycle profile in the coelomocytes of earthworm of polluted soil near a tannery field of India. Ecotoxicology and Environmental Safety, 200, 110713. doi: 10.1016/j.ecoenv.2020.110713
8. Ghosh, S. (2018). Environmental pollutants, pathogens and immune system in earthworms. Environmental Science and Pollution Research, 25(7), 6196–6208. doi:10.1007/s11356-017-1167-8
9. Ghosh, S. (2019). Impact of radiations on earthworms. Explor Anim Med Res, 9(2), 120–124.
10. Gupta, S., & Yadav, S. (2016). Immuno-defense strategy in earthworms: a review article. International Journal of Current Microbiology and Applied Sciences, 5, 1022–1035. doi:10.20546/ijcmas.2016.504.117
11. Gupta, S., Kushwah, T., & Yadav, S. (2014). Earthworm coelomocytes as nanoscavenger of ZnO NPs. Nanoscale Research Letters, 9(259). doi:10.1186/1556-276X-9-259
12. Hamed, S. S., Kauschke, E., & Cooper, E. L. (2005). Cytochemical properties of earthworm coelomocytes enriched by Percoll. International Journal of Zoological Research, 1, 74–83. doi:10.3923/ijzr.2005.74.83
13. Hayashi, Y., Miclaus, T., Engelmann, P., Autrup, H., Sutherland, D. S., & Scott-Fordsmand, J. J. (2016). Nanosilver pathophysiology in earthworms: Transcriptional profiling of secretory proteins and the implication for the protein corona. Nanotoxicology, 10(3), 303–311. doi:10.3109/17435390.2015.1054909
14. Homa, J., Stalmach, M., Wilczek, G., & Kolaczkowska, E. (2016). Effective activation of antioxidant system by immune-relevant factors reversely correlates with apoptosis of Eisenia andrei coelomocytes. Journal of Comparative Physiology B, 186(4), 417–430. doi:10.1007/s00360-016-0973-5
15. Kron, A., Roshko, V., Vlasenko, R., Onischuk I. (2010). Communities of earthworms (Oligochaeta, Lumbricidae) under conditions of сhronic electromagnetic stress. [Uhrupovannia doshchovykh cherviv (Oligochaeta, Lumbricidae) v umovakh khronichnoho elektromahnitnoho stresu]. Naukovyi visnyk Uzhhorodskoho universytetu. Seriia Biolohiia, 27, 13–17 (in Ukrainian). Access mode: http://eprints.zu.edu.ua/id/eprint/29828
16. Kurek, A., & Plytycz, B. (2003). Annual changes in coelomocytes of four earthworm species: The 7th international symposium on earthworm ecology· Cardiff· Wales· 2002. Pedobiologia, 47(5–6), 689–701. doi:10.1078/0031-4056-00246
17. Mácsik, L. L., Somogyi, I., Opper, B., Bovári-Biri, J., Pollák, E., Molnár, L., Nemeth, P. & Engelmann, P. (2015). Induction of apoptosis-like cell death by coelomocyte extracts from Eisenia andrei earthworms. Molecular Immunology, 67(2), 213–222. doi: 10.1016/j.molimm.2015.05.015
18. Mincarelli, L., Vischetti, C., Craft, J., & Tiano, L. (2016). DNA damage in different Eisenia andrei coelomocytes sub-populations after in vitro exposure to hydrogen peroxide. SpringerPlus, 5(302), doi: 10.1186/s40064-016-1950-x.
19. Plytycz, B., Bigaj, J., Falniowski, A., & Morgan, A. J. (2016). Unexpected results and open questions from experiments on regeneration in lumbricid worms. Invertebrate Survival Journal, 13(1), 315–325.
20. Ray, S., Gautam, A., Ray, A., Das, S., & Ray, M. (2019). Analysis of oxidative stress and cellular aggregation in the coelomocytes of earthworms collected from metal contaminated sites of industrial and agricultural soils of West Bengal, India. Environmental Science and Pollution Research, 26(22), 22625–22640. doi: 10.1007/s11356-019-05438-x
21. Rodriguez-Seijo, A., Lourenço, J., Rocha-Santos, T. A. P., Da Costa, J., Duarte, A. C., Vala, H., & Pereira, R. (2017). Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environmental Pollution, 220, 495–503. doi: 10.1016/j.envpol.2016.09.092
22. Roubalová, R., Płytycz, B., Procházková, P., Navarro Pacheco, N. I., & Bilej, M. (2018). Annelida: environmental interactions and ecotoxicity in relation to the earthworm immune system. In Advances in Comparative Immunology (pp. 933–951). Springer, Cham. doi: 10.1007/978-3-319-76768-0_27
23. Santocki, M., Falniowski, A., & Plytycz, B. (2016). Restoration of experimentally depleted coelomocytes in juvenile and adult composting earthworms Eisenia andrei E. fetida and Dendrobaena veneta. Applied Soil Ecology, 104, 163–173. doi: 10.1016/j.apsoil.2015.08.022
24. Sokolenko, V. L., & Sokolenko, S. V. (2019). Manifestations of allostatic load in residents of radiation contaminated areas aged 18–24 years. Regulatory Mechanisms in Biosystems, 10(4), 422–431. doi: 10.15421/021963
25. Sokolenko, V. L., Sokolenko, S. V., Sheiko, V. I., & Kovalenko, O. V. (2018). Interconnection of the immune system and the intensity of the oxidative processes under conditions of prolonged exposure to small doses of radiation. Regulatory Mechanisms in Biosystems, 9(2), 167–176. doi: 10.15421/021825
26. Swart, E., Dvorak, J., Hernádi, S., Goodall, T., Kille, P., Spurgeon, D., Svendsen, C., & Prochazkova, P. (2020). The effects of in vivo exposure to copper oxide nanoparticles on the gut microbiome, host immunity, and susceptibility to a bacterial infection in earthworms. Nanomaterials, 10(7), 1337. doi: 10.3390/nano10071337
27. Tak, E. S., Cho, S. J., & Park, S. C. (2015). Gene expression profiling of coelomic cells and discovery of immune-related genes in the earthworm, Eisenia andrei, using expressed sequence tags. Bioscience, Biotechnology, and Biochemistry, 79(3), 367–373. doi: 10.1080/09168451.2014.988677
28. Tkalec, M., Štambuk, A., Šrut, M., Malarić, K., & Klobučar, G. I. (2013). Oxidative and genotoxic effects of 900 MHz electromagnetic fields in the earthworm Eisenia fetida. Ecotoxicology and Environmental Safety, 90, 7–12. doi: 10.1016/j.ecoenv.2012.12.005
29. Vlasenko, R., Khomiak, I., Harbar, O., Demchuk, N. (2020). Lumbricides as a bioindicators of the influence of electrical transmission line in the conditions of Ukrainian Polissia. Travaux du Muséum National d’Histoire Naturelle “Grigore Antipa”, 63(1), 7–18. doi:10.3897/travaux.63.e51640
30. Yadav, S. (2016). Screening of immunocompetent coelomic cells in earthworms. International Journal of Sciences, 5(4), 43–51. doi:10.18483/ijSci.999
31. Yakkou, L., Houida, S., Dominguez, J., Raouane, M., Amghar, S., & Harti, A. E. (2021). Identification and Characterization of Microbial Community in the Coelomic Fluid of Earthworm (Aporrectodea molleri). Microbiology and Biotechnology Letters, 49(3), 391–402. doi:10.48022/mbl.2104.04013
32. Zhang, W., Liu, K., Li, J., Liang, J., & Lin, K. (2015). Impacts of BDE209 addition on Pb uptake, subcellular partitioning and gene toxicity in earthworm (Eisenia fetida). Journal of Hazardous Materials, 300, 737–744. doi: 10.1016/j.jhazmat.2015.08.014
33. Zirbes, L., Thonart, P., & Haubruge, E. (2012). Microsale interactions between earthworms and microorganisms, a review. Biotechnologie, Agronomie, Société et Environnement, 16(1), 125–131.
Published
2022-12-04
How to Cite
Sokolenko, S., Sokolenko, Y., Zubenko, O., Kobal, I., & Sokolenko, V. (2022). CORRELATION BETWEEN POPULATIONS OF LUMBRICUS TERRESTRIS’S COELOMOCYTES UNDER THE INFLUENCE OF HIGH-VOLTAGE ELECTRIC POWER TRANSMISSION LINES. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 48(2), 148-154. https://doi.org/10.32845/agrobio.2022.2.20