Physicochemical properties of soils in the forest-park stands of Kyiv city
Abstract
The experimental plots were established in natural forest stands of mature and overmature ages in different edatopes of forest growth – A2, B2, B3, C2, C3, D2 (according to Alekseev-Pogrebnyak's edaphic net). Forest stands formed mainly by Pinus sylvestris L. and / or Quercus robur L. The investigated natural forest stands are characterized by high forest plant effect, which can be explained by the favorable values of the soil’s physicochemical properties (pHH2O, pHKCl, amount of absorbed bases, absorption capacity, degree of saturation of bases).The analysis of physicochemical properties of soils in the forest-park stands of the Kyіv city makes it possible to formulate conclusions. First, the numerical value of the soil-absorbing complex of sod-podzolic soils of clay-sand mechanical composition is negligible. The saturation of the soil-absorption complex by the cations of alkaline earth metals and hydrogen is evidenced by the data of the absorption capacity, which range from 4.7 to 10.7 ‒ in the humus-eluvial horizon, as well as from 2.0 to 5.8 mg ‒ еq. per 100 g of soil ‒ in eluvial horizon. The fact of decrease of this index from the upper layers to the lower ones has been established, and a considerable increase is observed at the near occurrence of moraine sediments.Sums of absorbed bases, as well as the absorption capacity in the upper layers of all soils are close in value. The surface layers are characterized by significant amounts of the sums of the absorbed bases due to the accumulation of bases in the course of bio-circulation ‒ up to 3.3 mg ‒ eq. per 100 g of soil.
In fresh submerged conditions (edatope B2), the maximum value of the sum of absorbed bases was fixed in the humus-eluvial layer of the rich difference of fresh subsidence (edatope B2///) ‒ 5,25 mg ‒ eq. per 100 g of soil; the absorption capacity in this layer reaches 10.41 mg ‒ eq. per 100 g of soil. In edatopes B2/ and B2//, the sum of absorbed bases is negligible ‒ 0.10‒2.01 mg ‒ eq. per 100 g of soil, with the absorption capacity of 2.33‒9.07 mg ‒ eq. per 100 g of soil. Within these limits, the values of these indicators fluctuate in edatopes A2, B3, C2, C3. But in the deep layers of the soil profile (in places of occurrence of the mother soil), the value of this indicator increases again: in pine sand — up to 3.61 mg ‒ eq. per 100 g of soil, moraine sandy loam or loam of fresh suburbs ‒ up to 3.7, moraine light loam in edatope C2‒ up to 4.94 and in boulder clay ‒ up to 15.5 mg ‒ eq. per 100 g of soil.
In the case of oak forest, that grow on fertile soil in fresh moisture conditions (edatope D2), the sum of absorbed bases and absorption capacity have the greatest values at depths of 20‒40 cm (8.88 mg – eq. per 100 g soil and 17.9 mg – eq. 100 g soil respectively). The smallest values of these parameters were set at a depth of 62‒100 cm (respectively 4.25 mg ‒ eq. per 100 g soil and 6.7 mg – eq. per 100 g soil). Among the studied edatopes, the highest sums of the absorbed bases are characterized by the soil thickness of edatopes C2 and C3, where this index reaches 82 %.
The actual acidity (рНН2О) values indicate that the upper layers of sod-podzolic soils under fresh boron conditions (edatope A2) are characterized by a weak acid reaction (5.0‒5.5). The magnitude of this indicator deviates toward the midacid reaction in edatopes B2// and B2///, approaches neutral reaction (5.5‒6.0) on relatively rich soils in fresh and moist conditions of moisture (edatopes C2, C3) ‒ in proportion to the increase in Q. robur participation in forest stands. Such actual acidity (рНН2О) contributes to the development of mycorrhizal fungi, the normal nutrition of P. sylvestris and its successful growth. With the depth of the soil thickness, there is a general tendency to neutralize its acidity.
The value of the exchange acidity (pHKCl) of the surface layer of soil under pine stands is within the strongly acidic (4.0‒4.5), and in pine-oak forests this indicator varies between strongly acidic and slightly acidic (4.6‒5.2). In the surface layer of soil of pine forest stands, рНKCl is strongly acidic (4.0‒4.5), and under pine-oak forests it varies between strongly acidic and slightly acidic.
On the example of oak and pine-oak stands that are growing on fresh and moist relatively rich soils (edatopes C2 and C3) the peculiarity of distribution of actual acidity in the surface layer of soils beneath them is revealed. This feature is that the weakly acidic рНН2О reaction approaches to neutral with increasing proportion of Q. robur in the stand’s composition:1/10 of the total forest stand stock is Q. robur and 9/10 is P. sylvestris ‒ pHH2O is 5.0; 3/10 parts is Q. robur and 7/10 parts is P. sylvestris ‒ 5.5; 8/10 parts is Q. robur and 2/10 parts is P. sylvestris ‒ 5.7; 10/10 parts is Q. robur ‒ 5.9.
References
2. Sundert, К., Horemans J., Stendahl, J., & Vicca, S. (2018). The influence of soil properties and nutrients on conifer forest growth in Sweden, and the first steps in developing a nutrient availability metric. Biogeosciences, 15, 3475–3496. doi: org/10.5194/bg-15-3475-2018.
3. Hansson, K., Laclau, J.-P., Saint-André, L., Mareschal, L., Heijden, G., Nys, C., Nicolas, M., Ranger, J., & Legout, A. (2020). Chemical fertility of forest ecosystems. Part 1: Common soil chemical analyses were poor predictors of stand productivity across a wide range of acidic forest soils. Forest Ecology and Management, 461, 117843. doi: org/10.1016/j.foreco.2019.117843
4. Pogrebnjak, P. S. (1993). Lisova ekologija i typologija lisiv: vybrani praci. [Forest ecology and forest typology: selected works]. Naukova dumka, Kyiv (in Ukrainian).
5. Dollinger, J., & Jose, S. (2018). Agroforestry for soil health. Agroforest Syst 92, 213–219. doi: org/10.1007/s10457-018-0223-9.
6. Lukina, N. V., Tikhonova, E. V., Danilova, M. A., Bakhmet, O. N., Kryshen, A. M., Tebenkova, D. N., Kuznetsova, A. I., Smirnov, V. E., Braslavskaya, T. Yu., Gornov, A. V., Shashkov, M. P., Knyazeva, S. V., Kataev, A. D., Isaeva, L. G. & Zukert, N. V. (2019). Associations between forest vegetation and the fertility of soil organic horizons in northwestern Russia. Forest Ecosystem, 6, 34. doi: .org/10.1186/s40663-019-0190-2
7. Zolotarev, S. A., & Pohyton, O. P. (1971). Ob ob’ektyvnyh pokazateljah typov lesorastytel'nyh uslovyj sosnovyh lesov Kyevskogo Poles'ja [On objective indicators of types of forest vegetation conditions of pine forests of Kyiv Polesie]. Lesovodstvo y agrolesomelyoracyja, 27, 64‒71 (in Russian).
8. Savushhyk, N. P. (1989). Vzaymosvjaz' produktyvnosty lesov y morfologycheskyh pryznakov pochv v uslovyjah Poles'ja USSR [The relationship of forest productivity and morphological features of soils in the conditions of Polesie of the Ukrainian SSR] Lesovodstvo y agrolesomelyoracyja, 78, 35‒38 (in Russian).
9. Savushhyk, N. P., & Popkov, M. Ju. (1990). Podhod k raspoznavanyju typov uslovyj mestoobytanyja sosnovyh lesov Poles'ja USSR [An approach to the recognition of the types of habitat conditions of pine forests of Polesie of the Ukrainian SSR]. Lesovodstvo y agrolesomelyoracyja, 80, 18‒22 (in Russian).
10. Savushhyk, N. P. (1989). Produktyvnost' sosnovyh lesov Poles'ja USSR v svjazy s pochvennymy uslovyjamy [Productivity of pine forests of Polesie of the Ukrainian SSR in connection with soil conditions]: Avtoref. dys… kand. s.-h. nauk: 06.03.03. / Har'kov. c.-h. yn-t ym. V.V. Dokuchaeva (in Russian).
11.Kravec, P. V. (1992). Produktyvnost' y typologycheskaja dyagnostyka sosnovyh lesov Zapadnogo Poles'ja Ukrayny. [Productivity and typological diagnostics of pine forests of Western Polissya Ukraine].: Dys… kand. s.-g. nauk: 06.03.02. Kyi'v. (in Russian).
12. Dylis, N. V. (1987). Systema pochva – fytocenoz [Soil system ‒ phytocenosis]. Lesovedenye, 1, 3‒11 (in Russian).
13. Yvanov, A. F. (1970). Rost drevesnyh rastenyj y kyslotnost' pochv. [Woody plant growth and soil acidity]. Nauka y tehnyka, Mynsk (in Russian).
14. Spurr, S. G., & Barnes, B. V. (1984). Lesnaja ekologyja. [Forest ecology]. Pod red. S. A. Dyrenkova. Lesn. prom-st', Moskva (in Russian).
15. Uytteker, R. (1980). Soobshhestva i ekosystemy. [Communities and Ecosystems]. Progress, Moskva (in Russian).
16. Kulhavý, J., Suchomel J., & Menšík, L. (2014). Forest Ecology Textbook. Chapter 6. Biogeochemical cycles of nutrients: 62 [Electronic resource]. Access mode: https://www.slideshare.net/MuhammadRehan124/forest-ecology-mendel-university
17. Holubík, O., Podrázský, V., Vopravil, J., Khel, T., & Remeš, J. (2014). Effect of agricultural lands afforestation and tree species composition on the soil reaction, total organic carbon and nitrogen content in the uppermost mineral soil profile. Soil & Water Res., 9, 192–200.
18. Panwar, P., Pal, S., Reza, S. K. & Sharma, B. (2011). Soil Fertility Index, Soil Evaluation Factor, and Microbial Indices under Different Land Uses in Acidic Soil of Humid Subtropical India. Communications in Soil Science and Plant Analysis, 42, 2724–2737. doi: 10.1080/00103624.2011.622820
19. Bazylevych, N. Y., Tytljanova A. A., Smyrnov V. V., Rodyn, L. E., Nechaeva, N. T., & Levyn, F. Y. (1978). Metody yzuchenyja byologycheskogo krugovorota v razlychnyh pryrodnyh zonah [Methods of studying the biological cycle in various natural zones]. Mysl', Moskva (in Russian).
20. Vorob'jov, D. V. (1967). Metodyka lesotypologycheskyh yssledovanyj. [Methodology of forest typological studies]. Urozhaj, Kiev (in Russian).
21. Rodyn, L. E., Remezov, N. P., & Bazylevych, N. Y. (1967). Metodycheskye ukazanyja k yzuchenyju dynamyky y byologycheskogo krugovorota v fytocenozah [Guidelines for the study of dynamics and the biological cycle in phytocenoses]. Nauka, Leningrad (in Russian).
22. Smol'janynov, Y. Y. (1969). Byologycheskyj krugovorot veshhestv y povyshenye produktyvnosty lesov [Biological cycle of substances and increase of forest productivity]. Lesn. prom-st', Moskva (in Russian).
23. Kachinskij, N. A. (1975). Pochva: ejo svojstva i zhizn'. [Soil: its properties and life]. Nauka, Moskva (in Russian).
24. Jelin, Ju. Ja., Sambur, G. M., & Pohiton, P. P. (1960). Lisoroslynni umovy lisgospu [Forest growth conditions of the forestry unit]. Rezul'taty naukovyh doslidzhen' po lisovyh kul'turah u Bojars'komu doslidnomu lisgospi. UASGN, Kyiv, 1, 22‒62 (in Ukrainian).
25.Kovda, V. A. (1973). Osnovy uchenija o pochvah. Kniga vtoraja. Obshhaja teorija pochvoobrazujushhego processa. [Fundamentals of the doctrine of soils. The second book. General theory of the soil-forming process]. Nauka, Moskva (in Russian).
26.Remezov, N. P., & Pogrebnjak, P. S. (1965). Lesnoe pochvovedenie. [Forest soil science]. Lesn. promyshlennost', Moskva (in Russian).
27.Vil'jams, V. R. (1949). Izbrannye sochinenija v 2-h t. T.2. Pochvovedenie [Selected Works in 2 volumes. Volume 2: Soil science]. Sel'hozgiz, Moskva (in Russian).
28. Kremenec'ka, Je. O. (2006). Fizyko-himichni ta agrohimichni vlastyvosti g'runtu u seredn'ovikovyh shtuchnyh sosnovyh nasadzhennjah mishanogo skladu u Dzvinkivs'komu lisnyctvi Bojars'koi' LDS Kyi'vs'koi' oblasti [Physico-chemical and agrochemical properties of soil in middle age artificial pine plantations with mixed composition in the Dzvinkivske forestry of SE “Boyarska Forest Research Station” of Kyiv region]. Lisivnyctvo Ukrai'ny v konteksti svitovyh tendencij rozvytku lisovogo gospodarstva: Materialy Mizhnarodnoi' naukovo-praktychnoi' konferencii', prysvjachenoi' 150-richchju vytokiv kafedry lisivnyctva NLTU Ukrai'ny. L'viv: NLTU Ukrai'ny, 75‒76 (in Ukrainian).