DETERMINATION OF METHYL PARATHION IN VEGETABLES BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

Keywords: Methyl Parathion, pesticide residue, High Performance Liquid Chromatography.

Abstract

Organophosphorus pesticides are one of the most widely used insecticides, which are mainly used in grain, vegetables and fruits. Methyl parathion is a kind of organophosphorus pesticide, which belongs to nerve agent. It can cause different degrees of poisoning to human and livestock and cause serious environmental pollution. Therefore, it is of great significance to establish an effective method for detecting methyl parathion residues in agricultural products. The determination of methyl parathion is often carried out by gas chromatography, but because of the strong polarity and thermal instability of methyl parathion, gas chromatography brings certain difficulty. The High Performance Liquid Chromatography (HPLC) method was researched for the testing of Methyl Parathion residues in vegetables, and the chromatographic conditions for sample extraction, purification and detection were screened and optimized. In vegetables, the matrix is complex, the pesticide residue is low, and there are many interference factors. The main residual components are not easy to separate, enrich and purify, so the detection of related pesticides is not accurate. After lots of experimental exploration, the chromatographic conditions by acetonitrile extraction agent, methanol:water (73:27) as mobile phase and UV detection wavelength choosing 270 nm was selected finally. What’s more, QuEChERS (Quickly, Easy, Cheap, Effective, Rugged, Safe) method, a new pretreatment technology for pesticide residue detection in agricultural products developed in the world recent years, was used for pretreatment of three kinds of vegetables, and PSA and GCB were selected as purifying agents for sample pretreatment ultimately. The experimental results displayed that the chromatographic peak area of Methyl Parathion exhibiting a good linear relationship with its concentration in the 0.05 μM~20 μM range, and the standard curve equation is Y=4833.5x-32.64, the correlation coefficient is 99.96%. The average recoveries of Methyl Parathion in three kinds of vegetables (Lettuce, Cucumber and tomato) were between 87.38% and 114.12% at the three spiked levels of 0.5, 2 and 8μM, and the relative standard deviation (RSD) was between 1.72% and 6.2%. This method has the good points of simple operation, accurate and reliable, and is suitable for the detection of MP pesticide residues in various vegetables.

References

1. Anakwue, R. (2019). Cardiotoxicity of Pesticides: Are Africans at Risk? Cardiovascular Toxicology, 19(2), 95–104. Retrieved from ://WOS:000464881100001. doi:10.1007/s12012-018-9486-7
2. Ashraf, H. N., Walayat, N., Saleem, M. H., Niaz, N., Hafeez, A., Atiq, M. N. & Ali, S. (2022). Determination of pesticide residues from grapes procured from different markets using through High Performance Liquid Chromatography (HPLC). Pakistan Journal of Botany, 54(2), 737-741. Retrieved from ://WOS:000753045200003. doi:10.30848/ pjb2022-2(19)
3. Chen, J. (2010). Study of the assay method for organophosphorus compounds. (Master master), Zhejiang Normal University Available from Cnki
4. Chen, Z. F., Zhang, Y., Yang, Y. Q., Shi, X. R., Zhang, L., & Jia, G. W. (2021). Hierarchical nitrogen-doped holey graphene as sensitive electrochemical sensor for methyl parathion detection. Sensors and Actuators B-Chemical, 336. Retrieved from ://WOS:000639153000005. doi:10.1016/j.snb.2021.129721
5. Eddleston, M., Clutton, E., Taylor, M., Thompson, A., Worek, F., John, H. & Scott, C. (2020). Efficacy of an organophosphorus hydrolase enzyme (OpdA) in human serum and minipig models of organophosphorus insecticide poisoning. Clinical Toxicology, 58(5), 397-405. Retrieved from ://WOS:000483827400001. doi:10.1080/15563 650.2019.1655149
6. Fang, L., Jia, M. X., Zhao, H. P., Kang, L. Z., Shi, L. C., Zhou, L. D., & Kong, W. J. (2021). Molecularly imprinted polymer-based optical sensors for pesticides in foods: Recent advances and future trends. Trends in Food Science & Technology, 116, 387-404. Retrieved from ://WOS:000701874600014. doi:10.1016/j.tifs.2021.07.039
7. Gao, J., Qu, H., Zhang, C. T., Li, W. J., Wang, P., & Zhou, Z. Q. (2017). Direct chiral separations of the enantiomers of phenylpyrazole pesticides and the metabolites by HPLC. Chirality, 29(1), 19-25. Retrieved from :// WOS:000392433700004. doi:10.1002/chir.22661
8. Gonzalez-Gomez, L., Morante-Zarcero, S., Pereira, J. A. M., Camara, J. S., & Sierra, I. (2022). Improved Analytical Approach for Determination of Tropane Alkaloids in Leafy Vegetables Based on micro-QuEChERS Combined with HPLC-MS/ MS. Toxins (Basel), 14(10). Retrieved from https://www.ncbi.nlm.nih.gov/pubm ed/36287919. doi:10.3390/toxins14100650.
9. Harshit, D., Charmy, K., & Nrupesh, P. (2017). Organophosphorus pesticides determination by novel HPLC and spectrophotometric method. Food Chemistry, 230, 448-453. Retrieved from ://WOS:000400533200054. doi:10.1016/j.foodchem.2017.03.083
10. Huang, X., & Huang, H. Q. (2012). Alteration of the kidney membrane proteome of Mizuhopecten yessoensis induced by low-level methyl parathion exposure. Aquatic Toxicology, 114, 189-199. Retrieved from :// WOS:000303643700022. doi:10.1016/j.aquatox.2012.01.025
11. Jiang, J. W., Zhang, H. Y., Wang, C. L., & Xu, Y. (2016). Eelectrochemical Detection of Methyl Parathion in Fritillaria thunbergii Based on Acetylcholinesterase Immobilized Gold Nanoshpere. International Journal of Electrochemical Science, 11(7), 5481-5489. Retrieved from ://WOS:000384905600012. doi:10.20964/2016.07.31
12. Kalipci, E., Ozdemir, C., Oztas, F., & Sahinkaya, S. (2010). Ecotoxicological effects of Methyl parathion on living things and environment. African Journal of Agricultural Research, 5(8), 712-718. Retrieved from :// WOS:000277860700019.
13. Khan, M. S. I., Lee, N. R., Ahn, J., Kim, J. Y., Kim, J. H., Kwon, K. H., & Kim, Y. J. (2021). Degradation of different pesticides in water by microplasma: the roles of individual radicals and degradation pathways. Environmental Science and Pollution Research, 28(7), 8296-8309. Retrieved from ://WOS:000577242600005. doi:10.1007/ s11356-020-11127-x
14. Kumar, S., Kaushik, G., Dar, M. A., Nimesh, S., Lopez-Chuken, U. J., & Villarreal-Chiu, J. F. (2018). Microbial Degradation of Organophosphate Pesticides: A Review. Pedosphere, 28(2), 190–208. Retrieved from :// WOS:000433156500003. doi:10.1016/s1002-0160(18)60017-7
15. Li, C. Y., Chen, L. G., & Li, W. (2013). Magnetic titanium oxide nanoparticles for hemimicelle extraction and HPLC determination of organophosphorus pesticides in environmental water. Microchimica Acta, 180(11-12), 1109-1116. Retrieved from ://WOS:000322524100020. doi:10.1007/s00604-013-1029-0
16. Li, H., Zeng, E. Y., & You, J. (2014). Mitigating pesticide pollution in China requires law enforcement, farmer training, and technological innovation. Environ Toxicol Chem, 33(5), 963-971. Retrieved from https://www.ncbi.nlm.nih.gov/ pubmed/24753037. doi:10.1002/etc.2549
17. Liao, X. P., Zhang, C. X., Liu, Y., Luo, Y. W., Wu, S. S., Yuan, S. H., & Zhu, Z. L. (2016). Abiotic degradation of methyl parathion by manganese dioxide: Kinetics and transformation pathway. Chemosphere, 150, 90-96. Retrieved from ://WOS:000372765100012. doi:10.1016/j.chemosphere.2016.02.028
18. Liu, G. Z., Guo, W. Q., & Yin, Z. (2014). Covalent fabrication of methyl parathion hydrolase on gold nanoparticles modified carbon substrates for designing a methyl parathion biosensor. Biosensors & Bioelectronics, 53, 440-446. Retrieved from ://WOS:000329881100068. doi:10.1016/j.bios.2013.10.025
19. Liu, H., Li xiaopeng, & Wenying., L. (2012). Determination of organophosphorus insecticides residues in dry cabbages by ultrasonic extraction -gas chromatography. Journal of Zhongkai University of Agriculture and Engineering, 25.
20. Liu, C., & Li, Y. (2015). Detection of Methyl Parathion in Tea. China Fruit and Vegetable, 35, 24–27.
21. Lu, J. X., Sun, Y. F., Waterhouse, G. I. N., & Xu, Z. X. (2018). A voltammetric sensor based on the use of reduced graphene oxide and hollow gold nanoparticles for the quantification of methyl parathion and parathion in agricultural products. Advances in Polymer Technology, 37(8), 3629-3638. Retrieved from ://WOS:000457486100088. doi:10.1002/ adv.22147
22. Muckoya, V. A., Nomngongo, P. N., & Ngila, J. C. (2020). Determination of organophosphorus pesticides in wastewater samples using vortex-assisted dispersive liquid–liquid microextraction with liquid chromatography–mass spectrometry. International Journal of Environmental Science and Technology, 17(4), 2325-2336. doi:10.1007/s13762-020-02625-z.
23. Ng, T. K., Gahan, L. R., Schenk, G., & Ollis, D. L. (2015). Altering the substrate specificity of methyl parathion hydrolase with directed evolution. Archives of Biochemistry and Biophysics, 573, 59-68. Retrieved from :// WOS:000353864100007. doi:10.1016/j.abb.2015.03.012
24. Pang, G. F., Fan, C. L., Zhang, F., Li, Y., Chang, Q. Y., Cao, Y. Z., &Liang, P. (2011). High-Throughput GC/MS and HPLC/MS/MS Techniques for the Multiclass, Multiresidue Determination of 653 Pesticides and Chemical Pollutants in Tea. Journal of Aoac International, 94(4), 1253-1296. Retrieved from ://WOS:000294739300028.
25. Qiao, L. N., Qian, S. H., Wang, Y. H., & Lin, H. W. (2018). A colorimetric sensor array based on sulfuric acid assisted KMnO4 fading for the detection and identification of pesticides. Talanta, 181, 305-310. Retrieved from :// WOS:000426410500042. doi:10.1016/j.talanta.2018.01.029
26. Rana, S. M., Asi, M. R., Niazi, F., Sultana, S., Ghazala, & Al-Ghanim, K. A. (2011). Determination of organochlorine and nitrogen containing pesticide residues in Labeo rohita. Toxicological and Environmental Chemistry, 93(10), 1851-1855. Retrieved from ://WOS:000299740800001. doi:10.1080/02772248.2011.585746
27. Saethre, M. G., Komlan, F. A., Svendsen, N. O., Holen, B., & Godonou, I. (2012, Jan 15-20). Pesticide Residues Analysis of Three Vegetable Crops for Urban Consumers in Benin - Human and Environmental Consequences of Abuse and Misuse of Synthetic Pesticides. Paper presented at the 2nd All Africa Horticulture Congress, Skukuza, SOUTH AFRICA.
28. Tan, J., Liu, X. Y., Zhao, L. M., Lu, Y., & Liu, Z. H. (2009). Simultaneous and Double-quick Analysis of Organophosphorus Pesticide Residues in Ginseng by Matrix Solid-phase Dispersion and High Pressure Liquid Chromatography. Acta Chimica Sinica, 67(20), 2385-2389. Retrieved from ://WOS:000271760500020. 29. Vichapong, J., Burakham, R., & Srijaranai, S. (2016). Alternative Liquid-Liquid Microextraction as Cleanup for Determination of Neonicotinoid Pesticides Prior HPLC Analysis. Chromatographia, 79(5-6), 285-291. Retrieved from ://WOS:000371436000002. doi:10.1007/s10337-016-3022-3
30. Wang, H., Cheng, Z. W., Yuan, H. P., Zhu, N. W., Lou, Z. Y., & Otieno, P. (2020). Occurrence of banned and commonly used pesticide residues in concentrated leachate: Implications for ecological risk assessment. Science of the Total Environment, 710. Retrieved from ://WOS:000511088800098. doi:10.1016/j.scitotenv.2019.136287
31. Wang, Y. S., Chen, C. S., Cao, X. F., & Li, J. H. (2015). Determination of agrochemical residues in aquatic vegetables by solid-phase extraction combined with HPLC spectrometry analyses. Research on Chemical Intermediates, 41(5), 2841-2853. Retrieved from ://WOS:000352483300017. doi:10.1007/s11164-013-1393-8
32. Wei, L., Zhu, N. Z., Liu, X., Zheng, H. Y., Xiao, K. Y., Huang, Q. H., & Cai, M. H. (2022). Application of Hi-throat/ Hi-volume SPE technique in assessing organophosphorus pesticides and their degradation products in surface water from Tai Lake, east China. Journal of Environmental Management, 305. Retrieved from ://WOS:000741816000002. doi:10.1016/j.jenvman.2021.114346
33. Yu, R., Liu, Q., Liu, J. S., Wang, Q. C., & Wang, Y. (2016). Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China. Food Control, 60, 353-360. Retrieved from ://WOS:000364882900046. doi:10.1016/j.foodcont.2015.08.013 34. Zhao, Z. F., Dong, M. L., Bai, L., & Cao, K. Q. (2013). The pesticide application in major apple-producing areas of China and the evaluation of environment effects. Paper presented at the International Conference on Manufacture Engineering and Environment Engineering (MEEE), Hong Kong, PEOPLES R CHINA.
Published
2023-01-20
How to Cite
Fang, L. (2023). DETERMINATION OF METHYL PARATHION IN VEGETABLES BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 49(3), 3-8. https://doi.org/10.32845/agrobio.2022.3.1