Структурно-агрегатний склад грунту під різними сидератми у міжряддях Ginkgo biloba L.
Анотація
Гінкго білоба (Ginkgo biloba L.) для України є екзотичною рослиною, яка на даний час стає популярною для озеленення парків. Рослинна сировина (листки) використовуються як лікарська і у контексті органічного виробництва має фармацевтичну значущість. В Сумському національному аграрному університеті гінкго білоба вирощується з метою отримання органічної сировини розсадним способом; молоді саджанці пересаджуються у відкритий ґрунт, на ділянку, де догляд за рослинами відбувається без застосуванням пестицидів та синтетичних мінеральних добрив. Міжряддя між рослинами гінкго 2,5 м і у разі високої температури та посушливого вегетаційного періоду відсоток виживання особин знижується. Тому застосування сидеральних рослин у міжряддях гінкго білоба може допомогти рослині подолати температурний стрес, зрегулювати структурний та поживний стан ґрунту. У дослідженнях використано достатньо розповсюджені у Лісостепу України сидерати: фацелія, конюшина біла, конюшина червона, райграс однорічний, еспарцет піщаний, гірчиця біла. Сидерати висівалися у третю декаду квітня у міжряддя досліджуваного виду. Наприкінці серпня відібрано ґрунтові зразки на визначення структурно-агрегатного складу ґрунту пошарово 0‒10, 10‒20 і 20‒30 см, які після достигання повітряно-сухого стану були просіяні (сухий метод) і визначено відсотки часток ґрунту з різними діаметрами та коефіцієнт структурності ґрунту. Відсотки агрономічно цінної структури залежали від механічного обробітку ґрунту, що здійснювався на варіанті без сидератів та від видів сидератів, гідротермічних умов років дослідження. На варіанті без сидератів за механічного рихлення для боротьби з бур’янами отримано найвищий відсоток агрегатів діаметром 10‒0,25 мм у шарах 0‒10 і 20‒30 см, відповідно по цих глибинах і найвищий коефіцієнт структурності. Утримання міжрядь під такими сидератами як гірчиця біла, конюшина біла сприяло формуванню у шарі 0‒10 см доброго структурного стану. В шарі 10‒20 см коефіцієнт структурності був найвищий на варіанті із конюшиною білою, відповідно агрономічно цінна структура становила 69,6 %, дещо менше на гірчиці 68,3 % та еспарцеті 68,8 %. В шарі 20‒30 см еспарцет і конюшина біла серед сидератів показали найкращий результат, коефіцієнт структурності становив 2,7.
В подальшому дослідження ефективності покривних культур на ґрунтові режими, стан та розвиток гінкго білоба будуть продовжені і підбиратимуться кращі сидерати з оптимальними нормами та строками висіву та догляду за рослинами.
Посилання
2. Karpenko, O. Yu., Rozhko, V. M., Butenko, A. O., Masyk, I. M., Malynka, L. V., Didur, I. M., Vereshchahin, I. V., Chyrva, A. S., Berdin, S. I. (2019). Post-harvest siderates impact on the weed littering of Maize. Ukrainian Journal of Ecology, 9(3), 300-303.
3. Naukovo-obhruntova systema vedennya silskoho hospodarstva Sumskoyi oblasti (2004). [Scientific and substantiated system of agriculture of Sumy region]. Za red. M. P. Bondarenko. Sumy: VAT SOD «Kozatskyy val», 662 (in Ukrainian).
4. Prokopenko, S. M., Mitsai, S. G., Ponomarenko, O. O., Nesin, I. V., Krokhmal, O. I., Bezverkhy, V. G., Palchik, S. P., Talyanina, O. G., Topchiy, I. I., & Kokhan, O. M. (2020). Vidtvorennya rodyuchosti gruntu u Sumskiy oblasti [Reproduction of soil fertility in Sumy region]. Okhorona hruntiv, 10, 40‒47 (in Ukrainian).
5. Zakharchenko, E. A. & Mischenko, Y. H. (2017). Impact of different tillage practices and green manure on physical properties of Chernozem soil. [Electronic resource]. Degradation and revitalization of soil and landscape: proceedings : International conference, (10-13 September 2017). Czech Republic : Palacky University in Olomouc, 51 (in Ukrainian).
6. Mischenko, Y. (2017). Pislyazhnyvni syderaty ta porystist hruntu. [Green manure crop and porosity of the soil]. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriya «Ahronomiya i biolohiya», 2, 61‒69 (in Ukrainian).
7. Tomchuk, V. (2020). Volohozberezhennya v sadivnytstvi: zasoby i tekhnolohiyi. [Moisture conservation in horticulture: tools and technologies]. The scientific heritage. Budapest : Hungary, 47(7), 16‒27 (in Ukrainian).
8. Khamurzaev, S. M., Madaev, A. A., & Anasov, I. M. (2020). Green manure in the aisles of a young garden. [Sideraty v mezhduryad'yakh molodogo sada]. Plodorodiye, 4(115), 28‒29. (in Russian)
9. Liu, A., Ma, B.L. & Bomke, A. A. (2005). Effects of Cover Crops on Soil Aggregate Stability, Total Organic Carbon, and Polysaccharides. Soil Sci Soc Am J., 69, 2041‒2048. вoi: 10.2136/sssaj2005.0032
10. Kemper, R., Bublitz, T., Müller, P., Kautz, T., Döring, T. & Athmann, M. (2020). Vertical Root Distribution of Different Cover Crops Determined with the Profile Wall Method. Agriculture. doi: 10.3390/agriculture10110503
11. Mishchenko, Y. H., & Zakharchenko, E. A. (2019). Vplyv pislyazhnyvnoyi syderatsiyi na zaburyanenist buryakiv tsu-krovykh [The effect of green manures on weediness of sugar beet]. Bulletin of Sumy National Agrarian University. The series: Agronomy and Biology, 4(38), 41‒49.
12. Pachev, І. (2014). Study of Some Annual and Perennial Forage Crops as Sources of Green Manure (Siderates) for Soil Fertility Improvement. Soil science agrochemistry and ecology, XLVIII(2), 53‒56 (in Bulgarian).
13. Rigon, J. P. G., Franzluebbers, A. I. & Calonego, J. C. (2020). Soil aggregation and potential carbon and nitrogen mineralization with cover crops under tropical no-till. Journal of soil and water conservation, 75(5), 601‒609. doi: 10.2489/jswc.2020.00188
14. Basche, A. D. & Roesch-McNally, G.E. (2017). The trouble with cover crops: Farmers’ experiences with overcoming barriers to adoption Journal of Soil and Water Conservation, 72(3), 59‒63. doi: 10.2489/jswc.72.3.59A
15. Delgado, J. A. & Gantzer, C. J. (2015) The 4Rs for cover crops and other advances in cover crop management for environmental quality. Journal of Soil and Water Conservation, 70(6), 142A‒145A. doi: 10.2489/jswc.70.6.142A
16. Christensen, B. T. (1986). Straw incorporation and soil organic matter in macroaggregates and particle size separates. European journal of soil science, 37(1), 125‒135. doi: 10.1111/j.1365-2389.1986.tb00013.x
17. Angers, D. A., Recous, S. & Aita, C. (2005). Fate of carbon and nitrogen in waterstable aggregates during decom-position of 13C15N-labelled wheat straw in situ. https://doi.org/10.1111/j.1365-2389.1997.tb00549.x
18. Puget, P., Chenu, C. & Balesdent, J. (1995). Total and young organic matter distributions in aggregates of silty cul-tivated soils, 46(3), 449‒459. doi.org/10.1111/j.1365-2389.1995.tb01341.x
19. Kristiansen, S. M., Schjønning, P., Thomsen, I. K., Olesen, J. E., Kristensen, K. & Christensen, B. T. (2006). Similarity of differently sized macro-aggregates in arable soils of different texture. Geoderma, 137(1‒2), 147‒154. doi: 10.1016/j.geoderma.2006.08.005
20. Aliev, T. G. G., Krivolapov, I. P., Bogdanov, O. E., Bogdanov, R. E., & Makova, N. E. (2019). Organization of the soil maintenance system in the cherry orchard. Technologies for the food and processing industry of aic – healthy food, 4, 54‒58. doi: 10.24411/2311-6447-2019-10023
21. Yaroshchuk, R. A. (2016). Perspektivi viroshhuvannja Ginkgo biloba L. v umovah Pіvnіchno-shіdnogo Lіsostepu Ukraїni dlja zagotіvlі listja u farmacevtichnih cіljah. [Perspectives for growing of Ginkgo biloba L. under the conditions of northeast forest-steppe of Ukraine for harvesting of leaves for pharmaceutical chemicals]. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriya «Ahronomiya i biolohiya», 9 (32), 124–128 (in Ukrainian).
22. Kovalenko, I. M., Klymenko, G. O., Melnik, T. I., Yaroshchuk, R. A., Zherdetska, S. V., Su, Y., & Lykholat, O. A. (2020). Morphogenesis and vitality of seedlings of Ginkgo biloba in outdoor conditions. Regulatory Mechanisms in Biosystems, 11(1), 22‒28. doi: 10.15421/022003
23. Robertson, J., Thomas, C.J., Caddy, B., & Lewis, A. J. M. (1984). Particle size analysis of soils — A comparison of dry and wet sieving techniques. Forensic Science International, 24(3), 209‒217. doi: 10.1016/0379-0738(84)90186-5
24. Blaud, A., Menon, M., Zaan, B. Van der Lair, G. J., & Banwart, S. A. (2017). Chapter Five - Effects of Dry and Wet Sieving of Soil on Identification and Interpretation of Microbial Community Composition. Editor(s): Steven A. Banwart, Donald L. Sparks. Advances in Agronomy, Academic Press, 142,119‒142. doi: 10.1016/bs.agron.2016.10.006.
25. Zhang, S., Wang, R., Yang, X., Sun, B., & Li, Q. (2016). Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol. Sci Rep., 6, 39107. doi: 10.1038/srep39107
26. Medvedev, V. V. (2008). Struktura pochvy (metody, genesis, klassifikatsiia, evolyutsia, geografiia, monitoring, okhrana) [Soil structure (methods, genesis, classification, evolution, geography, monitoring, protection)]. Kharkov, 13 tipografiia, 406 (in Russian).
27. Zakharchenko, E. A., Masyk, I. M., & Dema, O. S. (2016). Znachennya relyefu u formuvanni struktury gruntiv [Importance of relief in forming the structure of soil]. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriya «Ahronomiya i biolohiya», 2, 223‒228 (in Ukrainian).
28. Gorban, V. A., Kuptsova, K. S., Ostrianyn, N. S., & Tetiukha, O. G. (2020). Osoblyvosti strukturno-ahrehatnoho skladu edafotopiv bayrachnykh lisiv pivdennoho varianta stepovoyi zony Ukrayiny. [Structural and aggregate composition features of southern variant natural forest edaphotopes of Ukrainian steppe zone]. Ecology and Noospherology, 31(1), 16–22. doi: 10.15421/032003
29. Kravchenko, Yu. S. (2020). Vidtvorennia rodiuchosti chornozemiv Ukrainy za gruntozakhysnoho zemlerobstva [Reproduction of fertility of chernozems of Ukraine under soil-protective agriculture]. Zbirnyk naukovyh prac "Agrobiologija", 1, 67–79. doi: 10.33245/2310-9270-2020-157-1-67-79 (in Ukrainian)
30. Yang, J., Duan, Y., Zhang, R., Liu. C., Wang, Y., Li, M., Ding, Y., Awasthi, M. K. & Li, H. (2020). Connecting soil dissolved organic matter to soil bacterial community structure in a long-term grass-mulching apple orchard, Industrial Crops and Products, 149, 112344. doi: 10.1016/j.indcrop.2020.112344
31. Das, K., Biswakarma, N., Zhiipao, R., Kumar, A., Ghasal, P.C. & Pooniya, V. (2020). Significance and Management of Green Manures. In: Giri B., Varma A. (eds) Soil Health. Soil Biology, 59. Springer, Cham. doi: 10.1007/978-3-030-44364-1_12
32. Zhou, M., Liu, C., Wang, J., Meng, Q., Yuan, Y., Ma, X., Liu, X., Zhu, Y., Ding, G., Zhang J., Zeng, X. & Du, W. (2020). Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Sci. Rep., 10, 265. doi: 10.1038/s41598-019-57193-1
33. Tsyuk, A., Tsentylo, L. V., & Melnyk, V. I. (2018). Structural and unit composition of soil depending on basic treatment and fertilizer. Biological Resources and Nature Management, 10(5–6), 139‒145. doi: 10.31548/bio2018.05.017
34. Surki, A., Nazari, M., & Fallah, S. (2021). Improvement of the soil properties, nutrients, and carbon stocks in different cereal–legume agroforestry systems. Int. J. Environ. Sci. Technol. 18, 123–130. doi: 10.1007/s13762-020-02823-9
35. Obrycki, J. F. & Karlen, D. L. (2020). Forages for Conservation and Improved Soil Quality. Chapter 12. Book Editor(s): Moore K. J., Collins M., Nelson J. C., Redfearn D. D. Forages: The Science of Grassland Agriculture, II, 7TH Edition. doi: 10.1002/9781119436669.ch12
36. Are, M., Kauer, K., Kaart, T., Astover, S. A. & Reintam, E. (2020). Water Stability of Soil Aggregates in a 50-Year-Old Soil Formation Experiment on Calcareous Glacial Till. Eurasian Soil Sc., 53, 619–631. doi: 10.1134/S1064229320050026
37. Liu, R., Thomas, B. W., Shi, X., Zhang, X., Wang, Z. & Zhang, Y. (2021). Effects of ground cover management on improving water and soil conservation in tree crop systems: A meta-analysis, Catena, 199, 105085. doi: 10.1016/j.catena.2020.105085
38. Slatnar, A., Kwiecinska, I., Licznar-Malanczuk, M. & Veberic, R. (2020). The effect of green cover within rows on the qualitative and quantitative fruit parameters of full-cropping apple trees. Hortic. Environ. Biotechnol., 61, 41–49. doi: 10.1007/s13580-019-00195-9
39. Li, H., Zhu, N., Wang, S., Gao, M., Xia, L., Kerr, P. G., & Wu, Y. (2020). Dual benefits of long-term ecological agri-cultural engineering: Mitigation of nutrient losses and improvement of soil quality, Science of The Total Environment, 721, 137848. doi: 10.1016/j.scitotenv.2020.137848
40. Wang, Y., Liu, L., Luo, Y., Awasthi, M. K., Yang, J., Duan, Y., Li, H., & Zhao, Z. (2020) Mulching practices alter the bacterial-fungal community and network in favor of soil quality in a semiarid orchard system, Science of The Total Environment, 725, 138527. doi: 10.1016/j.scitotenv.2020.138527
41. Liu, X., Yu, X.,Fan, D., & Jia, G. (2021). Effects of ryegrass canopy and roots on the distribution characteristics of eroded sediment particles during heavy rainfall events on steep loess cinnamon slopes in Zhangjiakou, China. Land degrada-tion and development, 32(4), 1643‒1655. doi: 10.1002/ldr.3769
42. He, H. B., Li, W. X., Zhang, Y. W., Cheng, J.-K., Jia, X. Y., Li, S., Yang, H. R., Chen, B. M., & Xin, G. R. (2020). Effects of Italian ryegrass residues as green manure on soil properties and bacterial communities under an Italian ryegrass (Lolium multiflorum L.)-rice (Oryza sativa L.) rotation. Soil and Tillage Research, 196, 104487. doi: 10.1016/j.still.2019.104487
43. Liu Aiguo Ma, B. L. & Bomke, A. A. (2005). Effects of Cover Crops on Soil Aggregate Stability, Total Organic Carbon, and Polysaccharides. Soil Sci. Soc. Am. J., 69, 2041‒2048. doi: 10.2136/sssaj2005.0032
44. Rorick, J. D., & Kladivko, E. J. (2017). Cereal rye cover crop effects on soil carbon and physical properties in southeastern Indiana. Journal of Soil and Water Conservation, 72(3), 260‒265. doi: 10.2489/jswc.72.3.260
45. Hospodarenko, G., & Lysianskyi, O. (2016). Retsyrkulyatsiya biohennykh elementiv u grunti za riznykh syderativ ta yikh udobrennya [Recycling of biogenic elements in the soil under different green manures and their fertilization]. Zbirnyk naukovykh prats Umanskoho natsionalnoho universytetu sadivnytstva, 88(1), 7‒16 (in Ukranian).
46. Hospodarenko, G., & Lysianskyi, O. (2015). Alelopatychnyy vplyv syderalnykh kultur na pshenytsyu ozymu [Allelopathic impact of green manure crops on winter wheat]. Visnyk Zhytomyrskoho natsionalnoho ahroekolohichnoho universytetu, 2(1), 190‒198 (in Ukranian).
47. Novokhatskyy, M., Nilova, N., & Pohorilyy, P. (2015). Syderaty – biolohichnyy faktor vidtvorennya rodyuchosti gruntu. Tekhniko-tekhnolohichni aspekty rozvytku ta vyprobuvannya novoyi tekhniky i tekhnolohiy dlya silskoho hospodarstva Ukrayiny. Green manure is a biological factor of soil fertility reproduction. Technical and technological aspects of development and testing of new equipment and technologies for agriculture of Ukraine. 19, 384‒396. [Electronic resources]. Access mode: http://nbuv.gov.ua/UJRN/Ttar_2015_19_50
48. Tykhonenko, D. H., Horin, M. O., Laktionov, M. I., Kanivets, V. I., Medvedyev, V. V., Balyuk, S. A., Bulyhin, Truskavetskyy, R. S., Kanash, O. P., Dehtyarov, V. V., Novosad, K. B., Filon, V. I., Lisovyy, M. V., Kizyakov, Y. Y., Matvi-yishyna, Z. M., & Hutorov, O. I. (2005). Gruntoznavstvo: pidruchnyk [Soil science: textbook]. Vyshcha osvita, Kyiv, 703 (in Ukrainian).
49. Mischenko, Y. (2013). Pozhnyvni syderaty ta strukturno-ahrehatnyy sklad hruntu [Green manure crop and structural aggregate state of the soil]. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriya «Ahronomiya i biolohiya», 3 (25), 83‒94 (in Ukrainian).
50. Zakharchenko, E. A., Masyk, I. M., & Davydenko, G. A. (2013). Vplyv riznoho sposobu osnovnoho obrobitku na strukturno-ahrehatnyy sklad hruntu pry vyroshchuvanni ozymoyi pshenytsi [Influence of different ways of the till of the soil on structural and modular structure at cultivation of winter wheat]. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriya «Ahronomiya i biolohiya», 3(23), 114‒119 (in Ukrainian).