ПЕРСПЕКТИВИ ЗАСТОСУВАННЯ ТА УДОСКОНАЛЕННЯ ТЕХНОЛОГІЇ ІНТЕРФЕРЕНЦІЇ РНК У БОРОТЬБІ З ШКІДНИКАМИ
Анотація
Через серйозні проблеми, які спричиняють хімічні пестициди – «3R» (формування стійкості до них, переродження та шкідливі залишки), вони поступово замінюються в сільському господарстві іншими методами боротьби з шкідниками та патогенами. Водночас, трансгенні культури, що експресують токсини Bacillus thuringiensis (Bt), були широко залучені для боротьби з комахами-шкідниками, але еволюція стійкості до Bt у задіяних шкідників загрожує надійності такого підходу. Дослідження щодо пошуку нових способів ефективної боротьби з шкідниками ніколи не припиняються. В останні роки отримав визнання біологічний метод боротьба з шкідниками, оскільки дає перевагами щодо відсутності забруднення та безперервного впливу на довкілля. Проте, біологічні методи також стикаються з багатьма проблемами: на їхню ефективність сильно впливають фактори зовнішнього середовища або комаха-господар; важко отримати велику кількість комах природних ворогів шляхом штучного розмноження, це дуже дорого для виробництва у лабораторіях комах – природних ворогів. З розвитком технологій молекулярної біології за допомогою сучасних молекулярно-біологічних мішеней отримано нову тенденцію для біологічної боротьби з шкідниками. Інтерференція РНК (RNAi) є висококонсервативним механізмом приглушення генів після транскрипції, який існував у комах. За допомогою цього мРНК націлена на деградацію дволанцюгової РНК (dsRNA) або гомологічної мРНК, що призводить до інгібування специфічної послідовності генів. Технологія RNAi не тільки відіграє важливу роль у вивченні функціонального геному комах, але також має великий потенціал у боротьбі з шкідниками. У 2001 році технологію RNAi було занесено журналом Science до складу десяти найкращих наукових проривів, а також його першовідкривачів удостоєно Нобелівської премії у 2006 році. RNAi має високу ефективність і сильну специфічність, широко використовується для вивчення функції цільового гена або дослідження експериментального лікування хвороб. Коли цільові гени комах знищувалися за допомогою РНК-і, це завжди призводило до загибелі комах або поведінкових дефектів. Це є екологічно чистий біотехнологічний метод для боротьби з шкідниками, він рідко викликає стійкість до інших інсектицидів. Тому технологія RNAi розглядається як потенційна стратегія боротьби з шкідниками, яка має великий потенціал, корисна для захисту від комах та розробки нових пестицидів тощо. Ця технологія успішно використовується у комах Hemiptera (напівкрилих), Orthoptera (прямокрилих), Diptera (двокрилих) та інших. У цій роботі в основному описано механізм приглушення RNAi, кілька способів трансплантації dsРНК комахам та фактори, що визначають ефективність RNAi при застосуванні на комахах. Нарешті, ми також розглянули існуючі проблеми та деякі поточні рішення технології RNAi, щоб додатково обговорити механізм та існуючі проблеми RNAi, які застосовуються у боротьбі з шкідниками. Це додає нове уявлення про боротьбу з шкідниками за допомогою технології RNAi.
Посилання
2. Araujo, R.N., Santos, A., Pinto, N.F., Lehane, M.J. & Pereira, M.H. (2006). RNA interference of the salivary gland nitrophorin 2 in the triatomine Bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection Insect Biochem. Molecular Biology, 36(9), 683–693. doi: 10.1016/j.ibmb.2006.05.012
3. Armas-Tizapantzi, A. & Montiel-González, A.M. (2016). RNAi silencing: A tool for functional genomics research on fungi. Fungal Biology Reviews, 30(3), 91–100.
4. Barinova, Y., Dietzl, G., Dickson, B. J., Fellner, M., Oppel, S., Su, K.C., Kinsey, K., Gasser, B., Marra, V., Keleman, K., Couto, A.D., Scheiblauer, S. & Schnorrer, F. (2007). A genome-wide for transgenic RNAi library conditional gene inactivation in Drosophila. Nature, 448, 151–156.
5. Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T. & Pleau, M. (2007). Control of coleopteran insect pests through RNA interference. Nat. Biotechnology. 25, 1322–1326. doi: http://dx.doi.org/10.1038/nbt1359
6. Bautista, M.A.M., Miyata, T., Miura, K. & Tanaka, T. (2009). RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochemistry and Molecular Biology, 39, 38–46.
7. Bellés, X. (2010). Beyond Drosophila: RNAi In Vivo and Functional Genomics in Insects. Annual Review of Entomology, 55, 111–128. doi: 10.1146/annurev-ento-112408-085301
8. Berezikov, E. (2011). Evolution of microRNA diversity and regulation in animals. Nature Review Genetics, 12(12), 846–860.
9. Bettencourt, R., Terenius, O. & Faye, I. (2002). Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos. Insect Molecular Biology 11(3), 267–271.
10. Blandin, S., Moita, L. F., Kocher, T., Wilm, M. Kafatos, F. C. & Levashina, E. A., (2002). Reverse Genetics in the mosquito Anopheles gambiae: Targeted disruption of them the Defensin gene. the EMBO Report. 3, 852–856.
11. Bolognesi, R., Ramaseshadri, P., Anderson, J., Bachman, P., Clinton, W., Flannagan, R., Oliver, I., Christina, L., Steven, L. & William, M. (2012). Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS ONE, 7, e47534. doi: 10.1371/journal.pone.0047534
12. Borel, B. (2017). CRISPR, microbes and more are joining the war against crop killers. Nature, 543, 302–304.
13. Borovsky, D. (2005). Insect peptide hormones and RNA-mediated interference (RNAi): promising technologies for future plant protection. Phytoparasitica 33, 109–112.
14. Cao, J.Y., Xu, Y.P., Li, W., Li, S.S., Rahman, H. & Cai, X.Z. (2016). Genome-Wide Identification of Dicer-Like, Argonaute, and RNA-Dependent RNA Polymerase Gene Families in Brassica Species and Functional Analyses of Their Arabidopsis Homologs in Resistance to Sclerotinia sclerotiorum. Frontiers in Plant Science, 7, 1614. doi: 10.3389/fpls.2016.01614
15. Carthew, R.W. & Sontheimer, E.J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136(4), 642–655.
16. Chitvan, K., Sergey, I., Elizabeth, W., Lex, F., William, M., Michael, P., Kaylee, M., Zhang, Y., Parthasarathy, R. & Jiang, C. (2018). Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS One, 3, 1–19.
17. Christiaens, O., Swevers, L. & Smagghe, G. (2014). dsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides, 53, 307–314.
18. Christiaens, O., Tardajos, M. G., Martinez Reyna, Z.L., Dash, M., Dubruel, P. & Smagghe, G. (2018). Increased RNAi efficacy in Spodoptera exigua via the formulation of dsRNA with guanylated polymers. Frontiers in Physiology, 9, 316.
19. Cooper, A.M.W., Silver, K., Zhang, J. & Park, Y. (2018). Molecular mechanisms of them influencing efficiency RNA interference in insects. Pest Management Sience, 75, 18–28.
20. Das, S., Debnath, N., Cui, Y., Unrine, J. & Palli, S.R. (2015). Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA delivery for gene silencing in Aedes aegypti: A comparative analysis. ACS. Applied Materials and Interfaces, 7(35), 19530–19535.
21. Deng, P., Xu, Q.Y., Fu, K.Y., Guo, W.C. & Li, G.Q. (2018). RNA interference against the putative insulin receptor substrate gene chico affects metamorphosis in Leptinotarsa decemlineata. Insect Biochemistry and Molecular Biology, 103, 1–11. doi: http://dx.doi.org/10.2144/btn-2019-0171
22. Dubrovina, A.S., Aleynova, O.A., Kalachev, A.V., Suprun, A.R., Zlata, V. & Ogneva, Z.V. (2019). Induction of transgene suppression in plants via external application of synthetic dsRNA. International Journal of Molecular Sciences, 20, 1585. doi: 10.3390/ijms20071585
23. Fire, A., Xu, S.Q., Montgomery, M.K., Steven, A.K., Samuel, E.D. & Craig, C.M. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.
24. Garbutt, J.S. & Reynolds, S. E. (2012). Induction of RNA interference genes by double-stranded RNA; implications for susceptibility to RNA interference. Insect Biochemistry & Molecular Biology – 42, 621–628.
25. Garbutt, J.S. Belles, X. Richards, E.H. & Reynolds, S.E. (2013). Persistence of double-stranded RNA in insect hemolymph as a potential determiner of RNA interference success: Evidence from Manduca sexta and Blattella germanica, Journal of Insect Physiology, 59, 171–178.
26. Geley, S. & Muller, C. (2004). RNAi: ancient mechanism with a promising future. xperimental Gerontology, 9, 985–998.
27. Gordon, K.H.J. & Waterhouse, P.M. (2007). RNAi for insect-proof plants. Nature Biotechnology 25, 1231–1232.
28. Griebler, M., Westerlund, S.A., Hoffmann, K.H. & Meyering-Vos, M. (2008). RNA interference with the allatoregulating neuropeptide genes from the fall armyworm Spodoptera frugiperda and its effects on the JH titer in the hemolymph. Journal of Insect Physiology, 54, 997–1007.
29. Gu, L. & Knipple, D.C. (2013). Recent advances in RNA interference research in insects: Implications for future insect pest management strategies. Crop Protection, 45, 36–40. doi: 10.1016/j.cropro.2012.10.004
30. Guan, R.B., Li, H.C. & Miao, X.X. (2017). RNAi pest control and enhanced BT insecticidal efficiency achieved by dsRNA of chymotrypsin-like genes in Ostrinia furnacalis. Journal of Pest Science, 90(2), 745–757.
31. Guan, R.B., Li, H.C. & Miao, X.X. (2018). Prediction of effective RNA interference targets and pathway-related genes in lepidopteran insects by RNA sequencing analysis. Insect Science, 25(3), 356–367.
32. Guo, Q., Liu, Q., Smith, N.A., Liang, G. & Wang, M.B. (2016). RNA Silencing in Plants: mechanisms, technologies and applications in horticultural crops. Current Genomics, 17, 476–489. doi: 10.2174/1389202917666160520103117
33. Hannon, G.J. (2002). RNA interference. Nature, 418, 244–251.
34. Heinemann, J.A., Agapito-Tenfen, S.Z. & Carman, J.A. (2013). A comparative evaluation of them the regulation of them GM crops or products containing dsRNA and suggested improvements to risk assessments. Environment International, 55, 43–55.
35. Huvenne, H. & Smagghe, G. (2010). Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. Journal of Insect Physiological. 56(3), 227–235.
36. Itsathitphaisarn, O., Thitamadee, S., Weerachatyanukul, W. & Sritunyalucksana, K. (2017). Potential of RNAi applications to control viral diseases of farmed shrimp, Journal of Invertebrate Pathology, 147, 76–85. doi: 10.1016/j.jip.2016.11.006
37. Jarosch, A. &Moritz, R.F. (2011). Systemic RNA-interference in the honeybee Apis mellifera: Tissue dependent uptake of them fluorescent siRNA after intra-abdominal application observed by laser-scanning microscopy. Journal of insect physiology, 57, 851–857.
38. Jarvinen, P., Oivanen, M. & Lonnberg, H. (1991). Interconversion and Phosphoester Hydrolysis of 2’,5’-and 3’,5’-dinucleoside Monophosphates: Kinetics and Mechanisms. The Journal of Organic Chemistry, 56, 5396-5401.
39. Jiang, Y.D., Yuan, X., Bai, Y.L., Wang, G.Y., Zhou, W.W. & Zhu, Z.R. (2018). Knockdown of timeless disrupts the circadian behavioral rhythms in Laodelphax striatellus (Hemiptera: Delphacidae). Environmental Entomology, 47(5), 1216–1225.
40. Joga, M.R., Zotti, M.J., Smagghe, G. & Christiaens, O. (2016). RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: what we know so far. Frontiers in Physiology, 7, 553.
41. Kennerdell, J.R. & Carthew, (1998). Use of them dsRNA-mediated based interference to Demonstrate that fiizzled and fiizzled 2 act in the wingless pathway. Cell, 95, 1017–1026.
42. Khan, A.M., Ashfaq, M., Zsofia, K., Abbas, K.A., Mansoor, S. & Falk, B.W. (2013). Use of Recombinant Tobacco Mosaic Virus to Achieve RNA Interference in Plants against the Citrus Mealybug, Planococcus citri (Hemiptera: Pseudococcidae). PLoS One, 8(9), e73657. doi: 10.1371/journal.pone.0073657.
43. Kourti, A., Swevers, L. & Kontogiannatos, D. (2017). “In search of new methodologies for efficient insect pest control: “the RNAi” “movement”,” in Biological Control of Pest and Vector Insects. ed. V. D. C. Shields (London, UK: IntechOpen Limited).
44. Kunte, N., McGraw, E., Bell, S., Held, D. & Avila, L.A. (2020). Prospects, challenges and current status of RNAi through insect feeding. Pest Management Science, 76, 26–41. doi: 10.1002/ps.5588
45. Kurreck, J. (2009) RNA interference: From basic research to therapeutic applications. Angewandte Chemie (International Edition in English), 48, 1378–1398.
46. Li, J., Chen, Q., Lin, Y., Jiang, T., Wu, G. & Hua, H. (2011). RNA interference in Nilaparvata lugens (Homoptera: Delphacidae) -based on dsRNA ingestion. Pest Management Science, 67, 852–859.
47. Li, J., Wang, X.P., Wang, M.Q., Ma, W.H. & Hua, H.X. (2013). Advances in the use of the RNA interference technique in Hemiptera. Insect Science, 20, 31–39. doi: 10.1111/j.1744-7917.2012.01550.x
48. Liu, F. Z., Li, X., Zhao, M.H., Guo, M.J., Han, K.H., Dong, X.X., Zhao, J., Cai, W. L., Zhang, Q.F. & Hua, H.X. (2020). Ultrabithorax is a key regulator for the dimorphism of wings, a main cause for the outbreak of planthoppers in rice. National Science Review, 7(7), 1181–1189.
49. Liu, Q., Zhou, H., Zhang, K., Shi, X. X., Fan, W. Zhu, R. X., Yu, P. S. & Cao, Z.W. (2012). In Silic Target-Specific siRNA Design Based on Domain Transfer in Heterogeneous Data. PLoS One, 7(12), e50697. doi: 10.1371/journal.pone.0050697.
50. Liu, S.H., Ding, Z.P., Zhang, C.W., Yang, B.J. & Liu, Z.W. (2010). Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochemistry and Molecular Biology, 40, 666–671.
51. Liu, S.R., Zhou, J.J., Hu, C.G., Wei, C.L. & Zhang, Z.J. (2017). MicroRNA-Mediated Gene Silencing in Plant Defense and Viral Counter-Defense. Frontiers in Microbiology, 8: 1801. doi: 10.3389/fmicb.2017.01801
52. Liu, X.P., Yun, K., Qing, F., Shi, F.G., Guo, J.F. & Chao, W. (2015). Functions of nuclear receptor HR3 during larvalpupal molting in Leptinotarsa decemlineata (Say) revealed by in vivo RNA interference. Insect Biochemistry and Molecular Biology, 63, 23–33.
53. Luo, Y., Wang, X., Wang, X., Yu, D.B. & Kang, L. (2013). Differential responses of Migratory locusts to systemic RNA interference via double-stranded RNA injection and bean. Insect Molecular Biology, 22, 574–583.
54. Mahaffey, J.P., Denell Brown, S.J., Mahaffey, JW. & Lorenzen, M.D. (2003). Using RNAi to the investigate orthologous homeotic gene function during development of them distantly related insects. Evolution & Development, 1, 11–15.
55. Majidiani, S., PourAbad, R. F., Laudani, F., Campolo, O., Zappalà, L. & Rahmani, S. (2019). RNAi in Tuta absoluta management: effects of injection and root delivery of dsRNAs. Journal of Pest Science, 92, 1409–1419. doi: 10.1007/s10340-019-01097-6
56. Mallikarjuna, R.J., Moises, J.Z., Guy, S. & Olivier, C. (2016). RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far. Fronters in Physiology, 7, 553. doi: 10.3389/fphys.2016.00553
57. Mamta, B. & Rajam, M.V. (2017). RNAi technology: a new platform for crop pest control. Physiology and Molecular biology of Plants, 23(3), 487–501.
58. Miller, C., Miyata, K., Brown, S.J. & Tomoyasu, Y. (2012). Dissecting Systemic RNA interference in the Red Flour Beetle Tribolium castaneum: Parameters Affecting the Efficiency of them RNAi. PLoS One, 7.
59. Miller, S.C., Brown, S.J. & Tomoyasu, Y. (2008). Larval RNAi in Drosophila? Development Genes and Evolution, 218, 505–510.
60. Moritz, G., Thomas, H., Zeynep, A., Oliver, P., Evgeny, K. & Michael, B. (2010). Genome RNAi: a database for cellbased RNAi phenotypes. 2009 update. Nucleic Acids Research, 38, D448–D452. doi: 10.1093/nar/gkp1038
61. Mutti, N.S., Park, Y., Reese, J.C. & Reeck, G.R. (2006). RNAi Knockdown of them a Salivary Transcript leading to lethality in the Pea Aphid, Acyrthosiphon pisum, Journal of Insect Physiology, 6, 1–7.
62. Niu, J., Shen, G., Christiaens, O., Smagghe, G., He, L. & Wang, J. (2018). Beyond insects: current status, achievements and future perspectives of RNAi in mite pests. Pest Management Science, 74(12), 2680–2687.
63. Palli, S.R. (2014). RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. Current Opinion in Insect Science, 6, 1–8. doi: 10.1016/j.cois.2014.09.011
64. Prentice, Katterinne., Pertry, I., Christiaens, O., Bauters, L., Bailey, A., Niblett, C., Ghislain, M., Gheysen, G. & Smagghe, G. (2015). Transcriptome Analysis and Systemic RNAi Response in the African Sweetpotato Weevil (Cylas puncticollis, Coleoptera, Brentidae). PLoS One, 10(1), e0115336. doi: 10.1371/journal.pone.0115336
65. Price, D.R. & Gatehouse, J.A. (2008). RNAi-mediated crop protection against insects. Trends Biotechnology, 26, 393–400.
66. Qi, T., Guo, J., Peng, H., Liu, P., Kang, Z. & Guo, J. (2019). Host-induced gene silencing: a powerful strategy to control diseases of wheat and barley. International Journal of Molecular Sciences, 20, E206. doi: 10.3390/ijms20010206
67. Rangasamy, M. & Siegfried, B. D. (2012). Validation of RNA interference in western corn rootworm Diabrotica virgifera virgifera LeConte (Coleoptera, Chrysomelidae) adults. Pest Management Science, 68, 587–591. doi: 10.1002/ps.2301
68. Rani Das, P. & Sherif, S.M. (2020). Application of Exogenous dsRNAs-induced RNAi in Agriculture: Challenges and Triumphs. Frontiers in Plant Science, 11, 946. doi: 10.3389/fpls.2020.00946.
69. Ren, Z.W., Zhuo, J.C., Zhang, C.X. & Wang, D. (2018). Characterization of NlHox3, an essential gene for embryonic development in Nilaparvata lugens. Archives of Insect Biochemistry and Physiology, 98, e21448.
70. Saleh, M.C., Tassetto, M., van Rij, R.P., Goic, B., Gausson, V., Berry, B., Jacquier, C., Antoniewski, C. & Andino, R. (2009). Antiviral immunity in Drosophila the requires systemic RNA interference spread. Nature, 458, 346–350.
71. Scott, J.G., Michel, K., Bartholomay, L.C., Siegfried, B.D., Hunter, W.B., Smagghe, G., Zhu, K.Y. & Douglas, A.E. (2013). Towards the elements of successful insect RNAi. Journal of Insect physiology, 59(12), 1212–1221.
72. Song, H.F., Zhang, J.Q., Li, D.Q., Cooper, A.M.W., Silver, K., Li, T., Liu, X.J., Ma, E.B., Zhu, K.Y. & Zhang, J.Z. (2017). A double-strand RNA degrading enzyme reduces the efficiency of oral RNA interference in migratory locust. Insect Biochemistry and Molecular Biology, 86, 68–80.
73. Sparks, C. & Nauen, R. (2015). IRAC: Mode of action classification and insecticide hold management. Pesticides Biochemical physiology, 121,122–128.
74. Svoboda, P., Stein, P., Hyashi, H. & Schultz, R.M. (2000). Selective reduction of dormant maternal m RNAs in mouse oocytes by RNA interference. Development, 127, 4147–4156.
75. Swevers, L. & Smagghe, G. (2012). Use of RNAi for Control of Insect Crop Pests. InArthropod-Plant Interactions. Netherlands: Springer; 177–197.
76. Terenius, O., Papanicolaou, A., Garbutt, J.S., Eleftherianos, I., Huvenne, H., Kanginakudru, S., Albrechtsen, M., An, C., Aymeric, J.L., Barthel, A., Bebas, P., Bitra, K., Bravo, A., Chevalier, F., Collinge, D.P., Crava, C.M., De Maagd, R.A., Duvic, B., Erlandson, M., Faye, I., Felfoldi, G., Fujiwara, H., Futahashi, R., Gandhe, A.S., Gatehouse, H.S., Gatehouse, L.N., Giebultowicz, J.M., Gomez, I., Grimmelikhuijzen, C.J., Groot, A.T., Hauser, F., Heckel, D.G., Hegedus, D.D., Hrycaj, S., Huang, L., Hull, J.J., Iatrou, K., Iga, M., Kanost, M.R., Kotwica, J., Li, C., Li, J., Liu, J., Lundmark, M., Matsumoto, S., Meyering-Vos, M., Millichap, P. J., Monteiro, A., Mrinal, N., Niimi, T., Nowara, D., Ohnishi, A., Oostra, V., Ozaki, K., Papakonstantinou, M., Popadic, A., Rajam, M. V., Saenko, S., Simpson, R.M., Soberon, M., Strand, M.R., Tomita, S., Toprak, U., Wang, P., Wee, C.W., Whyard, S., Zhang, W., Nagaraju, J., French-Constant, R.H., Herrero, S., Gordon, K., Swevers, L. & Smagghe, G. (2011). RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology, 57, 231–245.
77. Thakur, N., Singh, P. K., Borgio, J.F., Upadhyay, S.K., Verma, P.C., Tuli, R. & Chandrashekar, K. (2011). RNA Interference for the control of whiteflies (Bemisia tabaci) by oral route. Journal of Biosciences, 36, 153–161.
78. Tijsterman, M., Ketting, R. F. & Plasterk, R.H.A. (2002). The genetics of RNA silencing. Annual Review of Genetics, 36, 489–519. doi: 10.1146/annurev.genet.36.043002.091619.
79. Trivedi, B. (2010) Bug silencing: the next generation of pesticides. The New Scientist, 205, 34–37.
80. Turner, C.T., Davy, M.W., MacDiarmid, R.M., Plummer, K.M., Birch, N.P. & Newcomb, R.D. (2006). RNA interference in the light brown apple moth, Epiphyas postvittana Walker) induced by double-stranded RNA feeding. Insect Molecular Biological,15, 83–391.
81. Voinnet, O. (2008). Post-transcriptional RNA silencing in plant-microbe interactions: a touch of robustness and versatility. Current Opinion in Plant Biology, 11(4), 464–470. doi: http://dx.doi.org/10.1016/j.pbi.2008.04.006.
82. Voloudakis, A.E., Holeva, M.C., Sarin, L.P., Bamford, D.H., Vargas, M. & Poranen, M.M. (2015). “Efficient doublestranded RNA production methods for utilization in plant virus control. chapter 19,” in Plant Virology Protocols, Methods in Molecular Biology. Eds. I. Uyeda and C. Masuta (New York, U.S.A: Humana Press).
83. Walker, W. B. & Allen, M. L. (2011). RNA interference mediated knockdown of IAP in Lygus lineolaris induces mortality in adult and pre-adult life stages. Entomologia Experimentalis et Applicata, 138, 83–92.
84. Wang, K.X., Peng, Y.C., Pu, J., Fu, W.X., Wang, J.L. & Han, Z.J. (2016). Variation in RNAi efficacy among insect species is attributable to dsRNA degradation in vivo. Insect Biochemistry and Molecular Biology, 77, 1–9.
85. Wang, X.H., Aliyari R., Li, W.X., Li, H.W., Kim, K. & Carthew, R. (2006). RNA interference directs innate immunity against viruses in adult Drosophila. Science, 312, 452–454. doi: 10.1126/science.1125694
86. Whitten, M.M.A., Facey, P.D., Del, S.R., Fernández-Martínez, L.T., Evans, M.C., Mitchell, J.J., Bodger, O.G. & Dyson, P.J. (2016). Symbiont-mediated RNA interference in insects. Proceedings of the Royal Society B-Biological Sciences, 283, 20160042.
87. Whyard, S., Singh, S. D. & Wong, S. (2009). Ingested double-stranded RNAs can act as species-Specific insecticides. Insect Biochemistry and Molecular Biology, 39, 824–832.
88. Wianny, F. & Zernicka-Goetz, M. (2000). Specific interference with gene function by double-stranded RNA in early mouse development. Nature Cell Biology, 2000, 2(2), 7–75.
89. Wuriyanghan, H., Rosa, C. & Falk, B.W. (2011) Oral delivery of double-stranded RNAs and siRNAs induces RNAi effects in the potato/tomato psyllid, Bactericerca cockerelli. PLoS ONE, 6 (11), e27736
90. Wynant, N., Santos, D., Van Wielendaele, P. & Vanden Broeck, J. (2014a). Scavenger receptor-mediated endocytosis facilitates RNA interference in the desert locust, Schistocerca gregaria. Insect Molecular Biology, 23(3), 320–329.
91. Wynant, N., Santos, D., Verdonck, R., Spit, J., Van Wielendaele, P. & Vanden Broeck, J. (2014b). Identification, functional characterization and phylogenetic analysis of double stranded RNA degrading enzymes present in the gut of the desert locust, Schistocerca gregaria. Insect Biochemistry and Molecular Biology, 46(3), 1–8.
92. Xu, J., Wang, X. F., Chen, P., Liu, F. T., Zheng, S. C., Ye, H. & Mo, M. H. (2016). RNA Interference in Moths: Mechanisms, Applications, and Progress. Gene, 7(10), 88. doi: 10.3390/genes7100088
93. Yan, S., Ren, B., Zeng, B. & Shen, J. (2020). Improving RNAi efficiency for pest control in crop species. BioTechniques, 68, 283–290.
94. Yu, J.L., An, Z.F. & Liu, X.D. (2014). Wingless gene cloning and its role in manipulating the wing dimorphism in the white-backed planthopper, Sogatella furcifera. BMC Molecular Biology, 15, 1–9.
95. Yu, N., Christiaens, O., Liu, J., Niu, J., Cappelle, K., Caccia, S., Huvenne, H. & Smagghe, G. (2012). Delivery of dsRNA for RNAi in insects: An overview and future directions. Insect Science, 20, 4–14.
96. Zha, W., Peng, X., Chen, R., Du, B., Zhu, L. & He, G. (2011). Knockdown of midgut genes by dsRNA-transgenic plantmediated RNA interference in the hemipteran insect Nilaparvata lugens. PLOS ONE, 6: e20504. doi: 10.1371/journal.pone.0020504
97. Zhang, J., Khan, S.A., Heckel, D.G. & Bock, R. (2017). Next-generation insect resistant plants: RNAi-mediated crop protection. Trends Biotechnology, 35(9), 871–882.
98. Zhang, X., Zhang, J. & Zhu, K.Y. (2013). Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Molecular Biology, 19, 683–693. doi: 10.1111/j.1365-2583.2010.01029.x
99. Zhao, Y.Y., Liu, F., Yang, G. & You, M.S. (2011). PsOr1, a potential target for RNA interference-based pest management. Insect Molecular Biology, 20, 97–104.
100. Zheng, Y., Hu, Y., Yan, S., Zhou, H., Song, D., Yin, M., Shen, J. & Songm, D. (2019). A. polymer/detergent formulation improves dsRNA penetration through the body wall and RNAi-induced mortality in the soybean aphid Aphis glycines. Pest Management Science, 75, 1993–1999.
101. Zhu, L., Kandasamy, S. K. & Fukunaga, R. (2018). Dicer partner protein tunes the length of miRNAs using basemismatch in the pre-miRNA stem. Nucleic Acids Research, 46(7), 3726–3741.
102. Zotti, M., Dos Santos, E.A., Cagliari, D., Christiaens, O., Taning, C.N.T. & Smagghe, G. (2018). RNA interference technology in crop protection against arthropod pests, pathogens and nematodes, Pest Management Science, 74(6), 1239–1250.
103. Zotti, M.J. & Smagghe, G. (2015). RNAi technology for insect management and protection of beneficial insects from diseases: lessons, challenges and risk assessments. Neotropical. Entomology, 44, 197–213. doi: 10.1007/s13744-015-0291-8