ПОКРАЩЕННЯ СТРУКТУРНО-АГРЕГАТНОГО СТАНУ ГРУНТУ ЗА МІКОРИЗАЦІЇ КОРЕНЕВОЇ СИСТЕМИ РОСЛИН СІЛЬСЬКОГОСПОДАРСЬКИХ КУЛЬТУР МІКОРИЗОУТВОРЮВАЛЬНИМИ ГРИБАМИ
Анотація
Встановлено вплив мікоризації кореневої системи рослин сільськогосподарських культур мікоризоутворювальними грибами на структурно-агрегатний стан ґрунту. Польові, лабораторні та статистичні методи досліджень. Встановлено, що мікоризація кореневої системи рослин сільськогосподарських культур мікоризоутворювальними грибами позитивно впливає на структурно-агрегатний стан ґрунту. За використання біопрепаратів з цими мікроорганізмами частка грудочок ґрунту розміром 0,25–10,0 мм була більшою ніж у контролі. Зокрема, у посівах пшениці озимої у варіантах з препаратом Мікофренд (гриб Trichoderma harzianum Rifai) різниця у показниках досліду і контролю становила +5,5– +15,4 %, а з препаратом Міковітал (гриб Tuber melanosporum Vittad.) +6,1–+16,3 %. У посівах кукурудзи ці показники становили 4,4–8,2 %. Особливо помітним є покращення структурно-агрегатного стану ґрунту цих культур у перші 2 місяці їх росту і розвитку порівняно з більш пізніми строками вегетації рослин. Так, якщо у посівах пшениці м’якої озимої у цей період збільшення проти контролю частки грудочок розміром 0,25–10,0 мм становило 8,0–16,3 %, а у посівах кукурудзи 7,2–8,2 %, то на 90–120 день росту та розвитку рослин ці показники дорівнювали відповідно 5,5–10,2 % і 6,7–7,9 %. Покращення структурно-агрегатного стану ґрунту за мікоризації кореневої системи рослин мікоризоутворювальними грибами відбувається під впливом утворення міцеальної сітки та клеючого компоненту глікопротеїну гломатину, які сприяють формуванню з пилуватої його частини грудочок оптимальних розмірів, що в свою чергу позитивно позначається на його шпаруватості і повітропроникливості. Мікоризоутворювальні гриби Trichoderma harzianum Rifai і Tuber melanosporum Vittad. позитивно впливають на структурно-агрегатний стан ґрунту завдяки утворенню міцеальної сітки та клеючого компоненту глікопротеїну гломатину, які формують з пилуватої його частини грудочок оптимальних розмірів, що сприяє покращенню його шпаруватості і повітропроникності.
Посилання
2. Dalal, D. J., & Solanki, H. (2021). Arbuscular mycorrhizal fungi: diversity and its impact with abiotic factors in Phoenix dactylifera L. of Kachchh Region, Gujarat, India. International Journal of Scientific Research in Science and Technology, 8(2), 125–135. doi: 10.32628/IJSRST218222
3. Demydenko, O. (2021). Shchilnist budovy chornozemu opidzolenoho za riznykh system udobrennia i obrobitku [The density of the podzolized chernozem structure under different fertilization and tillage systems]. Visnyk ahrarnoi nauky, 99(6), 5–15 doi: 10.31073/agrovisnyk202106-01 (in Ukrainian).
4. Di Salvo, L. P., Groppa, M. D., & García de Salamone, I. E. (2020). Natural Arbuscular Mycorrhizal Colonization of Wheat and Maize Crops Under Different Agricultural Practices. In Agriculturally Important Fungi for Sustainable Agriculture (pp. 89–108). Springer, Cham.
5. Field, K. J., & Pressel, S. (2018). Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. New Phytologist, 220(4), 996–1011. doi: 10.1111/nph.15158
6. Field, K. J., Daniell, T., Johnson, D., & Helgason, T. (2020). Mycorrhizas for a changing world: Sustainability, conservation, and society. Plants, People, Planet, 2(2), 98–103. doi: 10.1002/ppp3.10092
7. Field, K. J., Daniell, T., Johnson, D., & Helgason, T. (2021). Mycorrhizal mediation of sustainable development goals. Plants, People, Planet, 3(5), 430–432. doi: 10.1002/ppp3.10223
8. Guo, Y., Ghirardo, A., Weber, B., Schnitzler, J. P., Benz, J. P., & Rosenkranz, M. (2019). Trichoderma species differ in their volatile profiles and in antagonism toward ectomycorrhiza Laccaria bicolor. Frontiers in microbiology, 10, 891. doi: 10.3389/fmicb.2019.00891
9. Havryshko, O. S., Olifir, Yu. M., & Partyka, T. V. (2019). Strukturno-ahrehatnyi stan yasno-siroho lisovoho poverkhnevo ohleienoho gruntu za tryvaloho ahrohennoho vplyvu v Zakhidnomu Lisostepu [Soil structure and aggregate state of lightgray forest surface gleyed soil under the prolonged agrogenic effects in the Western Forest-Steppe]. Peredhirne ta hirske zemlerobstvo i tvarynnytstvo, 65, 36–46 doi: 10.32636/01308521.2019-(65)-4 (in Ukrainian).
10. Howard, N., Pressel, S., Kaye, R. S., Daniell, T. J., & Field, K. J. (2022). The potential role of Mucoromycotina ‘fine root endophytes’ in plant nitrogen nutrition. Physiologia Plantarum, 174(3), e13715. doi: 10.1111/ppl.13715
11. Kehri, H. K., Akhtar, O., Zoomi, I., & Pandey, D. (2018). Arbuscular mycorrhizal fungi: taxonomy and its systematics. International Journal of Life Sciences Research, 6(4), 58–71.
12. Koshila Ravi, R., Anusuya, S., Balachandar, M., Yuvarani, S., Nagaraj, K., & Muthukumar, T. (2019). Influence of Xenobiotics on the Mycorrhizosphere. In Mycorrhizosphere and Pedogenesis (pp. 111-137). Springer, Singapore.
13. Kosolap, M. P., & Krotinov, O. P. (2011). Systema zemlerobstva No-till [No-till farming system]. Lohos, Kyiv, 352 (in Ukrainian).
14. Li, Q., Yan, L., Ye, L., Zhou, J., Zhang, B., Peng, W., & Li, X. (2018). Chinese black truffle (Tuber indicum) alters the ectomycorrhizosphere and endoectomycosphere microbiome and metabolic profiles of the host tree Quercus aliena. Frontiers in microbiology, 9, 2202.
15. Medvedev, V. V. (2004). Minimalizatsiia obrobitku gruntiv Ukrainy [Minimization of soil cultivation in Ukraine]. National Scientific Center “Institute for Soil Science and Agrochemistry Research named after O. N. Sokolovsky”, Kharkiv, 47 (in Ukrainian).
16. Medvediev, E. B. (2019). Strukturno-ahrehatnyi sklad gruntu zalezhno vid sposobu obrobitku v umovakh pivnichnoho Stepu Ukrainy [Structural and aggregate composition of soil depending on the tilling method in conditions of the northern Steppe of Ukraine]. Zernovi kultury, 3(1), 102–109 doi: 10.31867/2523-4544/0066 (in Ukrainian).
17. Medvediev, V. V., Bulyhin, S. Yu., & Vitvitskyi, S. V. (2018). Fizyka gruntu [Soil physics]. National University of Life and Environmental Sciences of Ukraine, Kyiv, 289 (in Ukrainian).
18. Mello, A., & Balestrini, R. (2018). Recent insights on biological and ecological aspects of ectomycorrhizal fungi and their interactions. Frontiers in Microbiology, 9, 216. doi: 10.3389/fmicb.2018.00216
19. Oehl, F., Sánchez-Castro, I., Santos, V. M., Silva, G. A. D., & Palenzuela Jiménez, E. J. (2019). Archaeospora europaea, a new arbuscular mycorrhizal fungus from France, Germany, Italy and Switzerland, with a key to the Archaeosporaceae species. Sydowia, 71, 129–137. doi: 10.12905/0380.sydowia71-2019-0129
20. Pikovska, O. V. (2013). Vplyv minimizatsii obrobitku gruntu na strukturnyi stan chornozemu zvychainoho [The effect of minimization of tillage on the structural condition of ordinary chernozem]. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia: Ahronomiia, 183(2), 193–197 (in Ukrainian).
21. Sinanaj, B., Bidartondo, M. I., Pressel, S., & Field, K. J. (2020). Molecular evidence of Mucoromycotina “fine root endophyte” fungi in agricultural crops. Biology and Life Sciences Forum, 4(1), 88. doi: 10.3390/IECPS2020-08728
22. Sugawara, R., Sotome, K., Maekawa, N., Nakagiri, A., & Endo, N. (2021). Mycorrhizal synthesis, morphoanatomical characterization of mycorrhizae, and evaluation of mycorrhiza-forming ability of Hydnum albidum–like species using monokaryotic and dikaryotic cultures. Mycorrhiza, 31(3), 349–359. doi: 10.1007/s00572-021-01024-7
23. Tanchyk, S. P., Tsiuk, O. A., & Tsentylo, L. V. (2015). Naukovi osnovy system zemlerobstva [Scientific foundations of farming systems]. Nilan-LTD, Vinnytsia, 314 (in Ukrainian).
24. Thirkell, T., Hoysted, G., Elliott, A., Field, K., & Daniell, T. (2021). The use of arbuscular mycorrhizal fungi to improve root function and nutrient-use efficiency. In Understanding and improving crop root function (pp. 493-530). Burleigh Dodds Science Publishing.
25. Tsapko, Yu., Vodiak, Ya., Zubkovska, V., & Kholodna, A. (2021). Perspektyvy vyroshchuvannia miskantusu hihantskoho dlia pokrashchennia ekosystemnykh posluh chornozemu opidzolenoho vazhkosuhlynkovoho [Prospects for growing giant Micancantus to improve ecosystem services of degraded heavy loam chornozem]. Visnyk ahrarnoi nauky, 99(9), 48–54 doi: 10.31073/agrovisnyk202109-07 (in Ukrainian).
26. Tsiuk, O. A., Tsentylo, L. V., & Melnyk, V. I. (2018). Strukturno-ahrehatnyi sklad gruntu zalezhno vid osnovnoho obrobitku ta udobrennia [Structural and unit composition of soil depending on basic treatment and fertilizer]. Bioresursy i pryrodokorystuvannia, 10(5–6), 139–145 doi: 10.31548/bio2018.05.017 (in Ukrainian).
27. Yaroshchuk, R. A., Zakharchenko, E. A., Kovalenko, I. M., Yaroshchuk, S. V., & Klymenko, H. O. (2020). Strukturnoahrehatnyi sklad gruntu pid riznymy syderatamy u mizhriaddiakh Ginkgo biloba L. [Soil aggregation with various cover crops in Ginkgo biloba L.]. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriia: Ahronomiia i biolohiia, 4, 23–32. doi: 10.32845/agrobio.2020.4.1 (in Ukrainian).
28. Yasnolob, I., Chayka, T., Aranchiy, V., Gorb, O., & Dugar, T. (2018). Mycorrhiza as a biotic factor, influencing the ecosystem stability. Ukrainian Journal of Ecology, 8(1), 363-370.
29. Yurkevych, Ye. O., Valentiuk, N. O., & Albul, S. I. (2020). Osoblyvosti formuvannia strukturno-ahrehatnoho skladu gruntu pid chas vyroshchuvannia kukurudzy za systemy orhanichnoho zemlerobstva v Prydunaiskomu Stepu Ukrainy [Peculiarities of formation of structural-aggregate composition of soil in cultivation of maize by systems of organic agriculture in the Danube Steppe of Ukraine]. Ahrarni innovatsii, 4, 79–86 doi: 10.32848/agrar.innov.2020.4.12 (in Ukrainian).
30. Zakharchenko, E. A., & Datsko, O. M. (2018). Vmist lehkohidrolizovanoho azotu ta strukturnist gruntu za riznykh sposobiv osnovnoho obrobitku gruntu [Content of hydrolyzed nitrogen and soil structure under different methods of tillage]. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriia: Ahronomiia i biolohiia, 9, 119–124 (in Ukrainian).