БІОХІМІЧНІ ПОКАЗНИКИ ЗЕРНА СОЇ ЗА ПЕРЕДПОСІВНОЇ ОБРОБКИ НАСІННЯ КОМБІНАЦІЯМИ МЕТАБОЛІЧНО АКТИВНИХ РЕЧОВИН

Ключові слова: соя, біохімічні показники, білок, “сира” клітковина, вітамін Е, убіхінон-10, параоксибензойна кислота (ПОБК), магній сульфат (MgSO4), Вимпел

Анотація

З усіх зернобобових культур соя є найбільш цінною культурою. За вмістом життєво необхідних речовин у зерні соя не має собі рівних. Вона характеризується високим вмістом білка, олії та високими поживними якостями. Без використання добрив неможливо отримати великий урожай сої. Серед основних факторів, що визначають урожайність цієї культури, добрива становлять 30%, сорти – 20%, погодні умови та захист рослин – по 15%, ефективна родючість та обробіток ґрунту – по 10%. Експериментальні дослідження свідчать про те, що регулятори росту рослин значно підвищують поживну цінність насіння сої. Тому, нами було вивчено вплив комбінацій метаболічно активних речовин (комбінацій вітаміну Е і убіхінону-10; вітаміну Е, параоксибензойної кислоти (ПОБК) і метіоніну; вітаміну Е, параоксибензойної кислоти (ПОБК), метіоніну, магній сульфату (MgSO4) і регулятора росту Вимпел на біохімічний склад насіння сої сорту Аннушка. Передпосівна обробка насіння сої метаболічно активними речовинами сприяє більш активному порівняно із контрольним варіантом накопиченню білку та «сирої» клітковини у зерні сої. Обробка насіння вітаміном Е в поєднані з убіхіноном-10 перед сівбою забезпечила підвищення вмісту сирого протеїну в насінні сої в середньому на 31,44 %. Комбінації метаболічно активних речовин дали можливість збільшити вміст «сирої» клітковини в середньому на 2,88–3,89 %. Максимальних результатів було досягнуто за використання комбінацій вітамін Е + убіхінон-10 та вітамін Е + метіонін + ПОБК. Вище зазначені комбінації перевищили показник контролю за вмістом «сирої» клітковини на 51,59 % і 50,00 %. Поєднання вітаміну Е та убіхінону-10 в порівнянні з іншими варіантами досліджень виявилось найефективнішим по накопиченню білку та «сирої» клітковини у насінні сої. Таким чином, введення у технологію вирощування сої передпосівної обробки насіння комбінаціями метаболічно активних сполук дозволить збільшити вміст білку, «сирої» клітковини в насінні сої, що є важливим з точки зору його харчової цінності.

Посилання

1. Amoanimaa-Dede, H., Su, C., Yeboah, A., Zhou., H, Zheng, D., & Zhu, H. (2022). Growth regulators promote soybean productivity: a review. PeerJ 10:e12556. doi: 10.7717/peerj.12556
2. Babych, A.O. (1996). Svitovi zemelni, prodovolchi i kormovi resursy [World land, food and fodder resources]. Ahrarna nauka, Kiev, 570 (in Ukrainian)
3. Basuchaudhuri, P. (2016). Influences of plant growth regulators on yield of soybean. Growth, 8(3.30).
4. Behr, M., Sergeant, K., & Leclercq, C.C. (2018). Insights into the molecular regulation of monolignol-derived product biosynthesis in the growing hemp hypocotyl. BMC Plant Biol 18, 1. doi: 10.1186/s12870-017-1213-1
5. Cal, Y.-P., Sun, Z.-W., Wang, X.-Y., Suo, Y.-R., & You J.-M. (2015) Determination of plant growth regulators in vegetable by high performance liquid chromatography-tandem mass spectrometry coupled with isotop-coded derivatization. Chinese journal of analytical chemistry, 43, (3), 419-423. ISSN 1872-2040. doi: 10.1016/S1872-2040(15)60814-3
6. Chornyi, S.H. (2020). Osnovy ahronomichnoi khimii: navchalnyi posibnyk [Fundamentals of agronomic chemistry: a textbook]. MNAU, Mykolaiv, 284 (in Ukrainian)
7. Devi, K. N., Vyas, A. K., Singh, M. S., & Singh, N. G. (2011). Effect of bioregulators on growth, yield and chemical constituents of soybean (Glycine max). Journal of Agricultural Science, 3(4), 151.
8. Dhakne, A. S., Mirza, I. A. B., Pawar, S. V., & Awasarmal, V. B. (2015). Yield and economics of soybean (Glycine max (L.) Merill) as influenced by different levels of sulphur and plant growth regulator. International Journal of Tropical Agriculture, 33, 2645–2648.
9. George, E. F., Hall, M. A., & Klerk, G. J. D. (2008). Plant growth regulators I: introduction; auxins, their analogues and inhibitors. In Plant propagation by tissue culture, Springer, Dordrecht, 175–204.
10. Giri, M., Jaybhaye, C., Kanwade, D., & Tijare, B. (2018). Effect of foliar application of gibbrellic acid on pigeonpea (Cajanus cajan (L.)) under rainfed conditions. Journal of Pharmacognosy and Phytochemistry, 7(2), 617–620.
11. Gutiérrez Martínez Mdel, M., Riquelme Raya, R., Campos Martínez, AM., Lorite Garzón, C., Strivens Vilchez, H., & Ruiz Rodríguez, C. (2006) Efectos de la soja en los síntomas vasomotores de la menopausia [Effect of soybeans and soy sauce on vasomotor symptoms during menopause]. Rev Enferm. Spanish, 29(6), 16–22. (Spanish).
12. Hamayun, M., Hussain, A., Khan, S. A., Irshad, M., Khan, A. L., Waqas, M., & Lee, I. J. (2015). Kinetin modulates physio-hormonal attributes and isoflavone contents of soybean grown under salinity stress. Frontiers in plant science, 6, 377.
13. Henneberg, W., & Stohmann, F. (1860). Beitrage zur Begrundung einer Rationellen Futterung der Wiederkauer. Schwetschke u. Sohn, Brunswick, 1 (2).
14. Hodgson, E. W., McCornack, B. P., Tilmon, K., & Knodel, J. J. (2012). Management Recommendations for Soybean Aphid (Hemiptera: Aphididae) in the United States. Journal of Integrated Pest Management, 3(1), 1–10. doi: 10.1603/IPM11019
15. Khatun, S., Roy, T. S., Haque, M. N., & Alamgir, B. (2016). Effect of plant growth regulators and their time of application on yield attributes and quality of soybean. International Journal of Plant & Soil Science, 11(1), 1–9.
16. Kim, Y. H., Hwang, S. J., Waqas, M., Khan, A. L., Lee, J. H., Lee, J. D. & Lee, I. J. (2015). Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance. Frontiers in Plant Science, 6, 714.
17. Korotych, P. (2006). Nadrannia soia y novyi pohliad na sivozminy [Early soybeans and a new look at crop rotation]. Propozytsiia, 1, 72–75 (in Ukrainian)
18. Koziuchko, A. H., Gavii, V. M. & Kuchmenko, O. B. (2020). Vplyv peredposivnoi obrobky nasinnia metabolichno aktyvnymy rechovynamy na okremi fiziolohichni pokaznyky soi sortu Annushka ta yii produktyvnist [Influence of pre-sowing treatment of seeds with metabolically active substances on certain physiological parameters of Annushka soybean and its productivity]. Naukovi zapysky Ternopilskoho natsionalnoho pedahohichnoho universytetu imeni Volodymyra Hnatiuka. Ser. Biolohiia, 1-2 (79), 84–90. doi: 10.25128/2078-2357.20.1-2.12 (in Ukrainian)
19. Koziuchko, A. & Gavii, V. (2021). Biokhimichnyi sklad nasinnia soi za peredposivnoi obrobky nasinnia kombinatsiiamy metabolichno aktyvnykh rechovyn ta rehuliatorom rostu vympel [Biochemical composition of soybean seeds for pre sowing seed treatment with combinations of metabolically active substances and the Vympel growth regulator]. Graal Nauky, (4), 135-140. doi: 10.36074/grail-of-science.07.05.2021.025 (in Ukrainian)
20. Koziuchko, A., & Gavii, V. (2020). Efektyvnist vplyvu peredposivnoi obrobky nasinnia metabolichno aktyvnymy rechovynamy ta rehuliatorom rostu roslyn «Vympel» na asymiliatsiini protsesy soi sortu annushka u fazi tsvitinnia roslyn [Effectiveness of pre-sowing seed treatment with metabolically active substances and plant growth regulator “vympel” on the assimilation processes of soy varieties annushka in the flowering phase of plants]. Zbirnyk naukovykh prats ΛΌHOΣ, 82-85. doi: 10.36074/18.09.2020.v2.15 (in Ukrainian)
21. Liu, C., Feng, N., Zheng, D., Cui, H., Sun, F. & Gong, X. (2019), Uniconazole and diethyl aminoethyl hexanoate increase soybean pod setting and yield by regulating sucrose and starch content. J. Sci. Food Agric., 99, 748–758. doi: 10.1002/jsfa.9243
22. Liu, M., & Lu, S. (2016). Plastoquinone and Ubiquinone in Plants: Biosynthesis, Physiological Function and Metabolic Engineering. Front Plant Sci.7, 1898. doi: 10.3389/fpls.2016.01898
23. M. M. Abd El-Aal, M., & S. M. Eid, R. (2017). Optimizing Growth, Seed Yield and Quality of Soybean (Glycine max L.) Plant Using Growth Substances. Asian Research Journal of Agriculture, 6(3), 1–19. doi: 10.9734/ARJA/2017/36034
24. Miret, J.A., Munné-Bosch, S. (2015). Redox signaling and stress tolerance in plants: a focus on vitamin E. Ann N Y Acad Sci. 1340, 29–38. doi: 10.1111/nyas.12639
25. Muhammad, H., Sumera, A. K., Abdul, L. K., Jae-Ho, S., Bashir, Dong-Hyun , S., & In-Jung, L. (2010). Exogenous Gibberellic Acid Reprograms Soybean to Higher Growth and Salt Stress Tolerance. Journal of Agricultural and Food Chemistry 58 (12), 7226-7232. doi: 10.1021/jf101221t
26. Nagel, L., Brewster, R., Riedell, W. E., & Reese, R. N. (2001). Cytokinin regulation of flower and pod set in soybeans (Glycine max (L.) Merr.). Annals of Botany, 88 (1), 27–31. doi: 10.1006/anbo.2001.1423
27. Nardi, S., Pizzeghello, D., Schiavon, M. & Ertani, A. (2016). Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci. agric. (Piracicaba, Braz.), 73(1),18–23. doi: 10.1590/0103-9016-2015-0006
28. Qi, R., Gu, W., Zhang, J., Hao, L., Zhang, M., Duan, L., & Li, Z. (2013). Exogenous diethyl aminoethyl hexanoate enhanced growth of corn and soybean seedlings through altered photosynthesis and phytohormone. Australian Journal of Crop Science, 7(13), 2021–2028.
29. Rizzo, G. & Baroni, L. (2018) Soy Foods and Their Role in Vegetarian Diets. Nutrients, 10(1), 43. doi: 10.3390/nu10010043
30. Roy Choudhury, S., Johns, S. M., & Pandey S. (2019). A convenient, soil-free method for the production of root nodules in soybean to study the effects of exogenous additives. Plant Direct, 3, 1–11. doi: 10.1002/pld3.135
31. Sattler, S.E., Gilliland, L.U., Magallanes-Lundback, M., Pollard, M. & Della Penna, D. (2004). Vitamin E. Is Essential for Seed Longevity and for Preventing Lipid Peroxidation during Germination. The Plant Cell, 16(14), 19–32. doi: 10.1105/tpc.021360
32. Sichkar, V.I. (1999). Soia u prodovolchomu balansi Ukrainy [Soy in the food balance of Ukraine]. Visn. ahrar. nauky Ukrainy, 4, 22–26 (in Ukrainian)
33. Stahl, E., Hartmann, M., Scholten, N. & Zeier, J. (2019). A role for tocopherol biosynthesis in arabidopsis basal immunity to bacterial infection. Plant physiol, 181(3), 1008–1028. doi: 10.1104/pp.19.00618
34. Steffens, B., Wang, J. & Sauter, M. (2006). Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta 223, 604–612. doi: 10.1007/s00425-005-0111-1
35. Sudadi, S. & Suryono, S. (2015). Exogenous application of tryptophan and indole acetic acid (IAA) to induce root nodule formation and increase soybean yield in acid, neutral and alkaline soil. Agrivita, Journal of Agricultural Science, 37(1), 37–44.
36. Sun, F., Feng, N., Zheng, D., Cui, H., Liu, C., He, T., & Zhao, J. (2016). Effects of plant growth regulators S3307 and DTA-6 on physiological metabolism and GmAc gene expression in soybean. Scientia Agricultura Sinica, 49, 1267–1276.
37. Sun, F., Feng, N., Zheng, D., Cui, H., Liu, C., He, T., & Zhao, J. (2016). Effects of plant growth regulators S3307 and DTA-6 on physiological metabolism and GmAc gene expression in soybean. Scientia Agricultura Sinica, 49, 1267–1276.
38. Travaglia, C., Reinoso, H., & Bottini, R. (2009). Application of abscisic acid promotes yield in field-cultured soybean by enhancing production of carbohydrates and their allocation in seed. Crop and Pasture Science 60, 1131-1136. doi: 10.1071/CP08396
39. Wu, C., Hua, Y., Chen, Y., Kong, X. & Zhang, C. (2017), Microstructure and model solute transport properties of transglutaminase-induced soya protein gels: effect of enzyme dosage, protein composition and solute size. Int J Food Sci Technol, 52, 1527–1533. doi: 10.1111/ijfs.13444
40. Yeshchenko, V.O., Kopytko, P.H., & Opryshko, V.P. (2005) Osnovy naukovykh doslidzhen v ahronomii [Fundamentals of scientific research in agronomy]. Diia, Kyiv, 288 (in Ukrainian).
Опубліковано
2022-12-04
Як цитувати
Козючко, А. Г., & Гавій, В. М. (2022). БІОХІМІЧНІ ПОКАЗНИКИ ЗЕРНА СОЇ ЗА ПЕРЕДПОСІВНОЇ ОБРОБКИ НАСІННЯ КОМБІНАЦІЯМИ МЕТАБОЛІЧНО АКТИВНИХ РЕЧОВИН. Вісник Сумського національного аграрного університету. Серія: Агрономія і біологія, 48(2), 90-95. https://doi.org/10.32845/agrobio.2022.2.13