АКТИВНІСТЬ ЦЕЛЮЛОЗОРУЙНІВНИХ БАКТЕРІЙ ЗА РІЗНИХ ОБРОБІТКІВ ГРУНТУ ТА ПЕРЕДПОСІВНОЇ ІНОКУЛЯЦІЇ КУКУРУДЗИ

Ключові слова: вологість грунту, обробка насіння, обробіток ґрунту, урожайність, добрива, біологічна актив- ність, інокулянти, чорнозем, родючість, ризосфера.

Анотація

Активність, на перший погляд не помітних, целюлозоруйнівних бактерій відіграє важливу роль у житті людей. По-перше, ці мікроорганізми є редуцентами, тобто вони розкладають відмерлі рештки рослин. По-друге, під час своєї роботи вони вивільняють у атмосферу двоокис вуглецю, який рослини, у свою чергу, використовують у процесі фотосинтезу. Тому проведення досліджень із активності цієї ґрунтової біоти є дуже актуальними, особливо, коли в наші часи аграрна промисловість намагається будь-якими засобами підвищити продуктивність рослин. Наразі, на ринку з’явилося безліч біодобрив, що містять у своєму складі ефективні мікроорганізми, що мають позитивно впливати на рослину і ґрунт та задовольняти потреби агровиробників у їх запитах. Чотири методи обробітку ґрунту та обробки насіння кукурудзи біодобривами (в рідинному та порошкоподібному станах) вивчалися в умовах чорнозему типового, м. Суми, Україна. Серед методів, що використовувались в досліді: польовий (гравіметричний й аплікаційний) та статистичний. За результатами трирічного досліду було встановлено, що вологість ґрунту перед сівбою культури майже не відрізнялась за обробітками, окрім, полицевого на глибину 25–28 см (оранка), де починаючи з глибини 50 до 100 см та на необоротному (дискування на глибину 5–8 см) на глибину від 30 до 70 см показники були вищими. Вологість ґрунту після збирання була дещо нижчою на оранці та дискуванні на глибину 5–8 см на глибині 0–30 см, водночас на інших безполицевих обробітках вологість ґрунту була вищою. При закладанні досліду із лляним полотном за використання всіх обробітків ґрунту у шарі 0–10 см вологість була меншою, ніж у більш глибоких горизонтах. Дослідженнями активності ґрунтової біоти за використання інокулянтів та різних видів обробітку ґрунту було встановлено, що інокулянти не мали впливу на досліджувані показники. Водночас, обробіток ґрунту суттєво вплинув на розкладання полотна. Так, серед досліджуваних варіантів, найменший вплив на активність біоти виявлений при дискуванні на глибину 15–18 см на глибині 0–10 та 10–20 см. Однак, на глибині 20–30 см найнижчі показники були зафіксовані на оранці на глибину 25–28 см. Інші варіанти були приблизно на однаковому рівні. Варто додати, що було виявлено позитивну кореляцію між вологістю ґрунту та активністю целюлозоруйнівних бактерій в шарі ґрунту 0–30 см.

Посилання

1. Bala, M. I. & Zakharchenko, E. A. (2022). Which ways of soil tillage are the best for crops? Science of XXI century: development, main theories and achievements. 1, 80–82. doi: 10.36074/scientia-24.06.2022
2. Borowik, A. & Wyszkowska, J. (2016a). Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant. Soil and Environment, 62(6), 250–255. doi: 10.17221/158/2016-PSE
3. Borowik, A. & Wyszkowska, J. (2016b). Impact of temperature on the biological properties of soil. International agrophysics, 30(1), 1–8. doi: 10.1515/intag-2015-0070
4. Butenko, A. O., Hunin, S. I., Omelchenko, O. P., Filonenko, A. A., & Pidluzhnyi, T. E. (2022). Realizatsiia produktyvnoho potentsialu kukurudzy na zerno za rakhunok optymizatsii systemy udobrennia. [Realization of the productive potential of corn for grain due to optimization of the fertilization system]. The 12th International scientific and practical conference “Current challenges, trends and transformations, (13–16 December 2022), 20–24. https://doi.org.10.46299/isg.2022.2.12
5. Chamizo, S., Adessi, A., Certini, G., & De Philippis, R. (2020). Cyanobacteria inoculation as a potential tool for stabilization of burned soils. Restoration Ecology, 28, 106–114. doi: 10.1111/rec.13092
6. Datsko, О. М. (2021). Roslynni probiotyky: vplyv na roslyny v umovakh stressu. [Plant probiotics: effect on crops under stress]. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 43(1), 10–18. doi: 10.32845/ agrobio.2021.1.2
7. Datsko, O. M. & Zakharchenko, E. A. (2022). The characteristics of tillage methods under maize cultivation. Agrarian innovations, 13, 46–52. doi: 10.32848/agrar.innov.2022.13.7
8. Dindaroglu, T., Tunguz, V., Babur, E., Alkharabsheh, H.M., Seleiman, M.F., Roy, R., & Zakharchenko, E. (2022). The use of remote sensing to characterise geomorphometry and soil properties at watershed scale. International Journal of Global Warming, 27(4), 402–421. doi: 10.1504/IJGW.2022.10049112
9. Furtak, K. & Gałązka, A. (2019). Edaphic factors and their influence on the microbiological biodiversity of the soil environment. Postępy Mikrobiologii-Advancements of Microbiology, 58(4), 375–384. doi: 10.21307/PM-2019.58.4.375
10. Gepenko, O. V. (2013). Tseliulozolitychna aktyvnist gruntu v riznykh korotkorotatsiinykh sivozminakh [Celluloselytic activity of soil in different korotkorotatsionnyh crop rotations]. Visnyk Kharkivskoho natsionalnoho ahrarnoho universytetu. Seriia “Soil science, agrochemistry, farming, forestry, ecology of soil”, 1, 176–180. URL: https://repo.btu.kharkov.ua/bitstream/ 123456789/12322/1/Vkhnau_grunt_2013_1_40.pdf
11. Hanhur, V., & Sakhatska, V. (2019). Mikrobiolohichna aktyvnist gruntu za riznykh sposobiv obrobitku. [Soil microbiological activity under different tillage methods]. Bulletin of Poltava State Agrarian Academy, (4), 13–19. doi: 10.31210/visnyk2019.04.01
12. Hryhoriv, Ya. Ya., Butenko, A. O., Davydenko, G. A., Radchenko, M. V., Tykhonova, O. M., Kriuchko, L. V. & Hlupak, Z. I. (2020). Productivity of sugar maize of hybrid Moreland F1 depending on technological factors of growing. Ukr J Ecol, 10, 268-272. doi: 10.15421/2021_84
13. Ju, W., Liu, L., Fang, L., Cui, Y., Duan, C. & Wu, H. (2019). Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicology and Environmental Safety, 167, 218-226. doi: 10.1016/j.ecoenv.2018.10.016
14. Каzyutа, А. А. (2015). Tseliulozoruinivna aktyvnist chornozemu typovoho [Activity of typical chernozem on the destruction of cellulose]. Bulletin of Kharkiv National Agrarian University, Seriia “Soil science, agrochemistry, farming, forestry, ecology of soil”, 2, 159–169.
15. Kharchenko, O., Zakharchenko, E., Kovalenko, I., Prasol, V., Pshychenko, O. & Mishchenko, Y. (2019). On problem of establishing the intensity level of crop variety and its yield value subject to the environmental conditions and constraints. AgroLife Scientific Journal, 8(1), 113–119.
16. Kharchenko O. V., Petrenko, S. V., Sobko, M. G., Medvid, S. I. & Zakharchenko, E. A. (2021a). Nutrients use efficiency by modern hybrids of maize under arid conditions of the Forest-Steppe. Agrochemistry and Soil Science, 91, 49–58. doi: 10.31073/acss91-06
17. Kharchenko, O., Petrenko, S., Sobko, M., Medvid, S., Zakharchenko, E. & Pschychenko, O. (2021b). Models of quantitative estimation of sowing density effect on maize yield and its dependence on weather conditions. Scientific papers. Series A. Agronomy, LXIV (2), 224–231.
18. Kovalchuk, N. S. & Kolesnyk, T. M. (2016). Zminy tseliulozolitychnoi aktyvnosti dernovo-slabopidzolystoho hruntu pid vplyvom mikrobiolohichnykh preparativ [Сhanges of sod-podzolic soils cellulolytic activity under the microbiological preparation influence]. Bulletin National University of Water and Environmental Engineering, 1(73), 30–38.
19. Kovalenko, О. (2022). Vplyv biodestruktora sterni ekostern na mikrobiolohichni pokaznyky hruntu za riznoho obrobitku [The influence of ecostern stubble biodestructor on soil microbiological parameters under different tillage]. Grail of Science (20), 72-75. doi: 10.36074/grail-of-science.30.09.2022.011
20. Kotenko, S. S. (2017). Obgruntuvannia dotsilnosti vykorystannia inokuliatsii gruntu mikroorhanizmamy v orhanichnomu zemlerobstvi [Justification of the feasibility of using soil inoculation with microorganisms in organic farming]. Materialy III Mizhnarodnoi naukovopraktychnoi konferentsii «Ovochivnytstvo i bashtannytstvo: istorychni aspeky, suchasnyi stan, problemy i perspektyvy rozvytku, 13–14 March 2017, 1, 144–156.
21. Kumar, A. S. (2022). Impact of COVID-19 on greenhouse gases emissions: A critical review. Science of the total environment 806(1), 150349. https://doi.org/10.1016/j.scitotenv.2021.150349
22. Malgioglio, G., Rizzo, G., Nigro, S., Lefebvre du Prey, V., Herforth-Rahmé, J., Catara, V., & Branca, F. (2022). Plant- Microbe interaction in sustainable agriculture: the factors that may influence the efficacy of PGPM application. Sustainability, 14(4), 2253. doi: 10.3390/su14042253
23. Manushkina, T., Drobitko, А., Kachanova, T., Heraschenko, O. (2020). Ecological features of No-till technology in the conditions of the Southern Steppe of Ukraine, Ukrainian Black Sea region agrarian science, (4), 47–53. doi: 10.31521/2313-092X/2020-4(108)
24. Masyk, I., Karabut, A., Niedielnitsyna, D., Pylypenko, Yu., & Ustymenko, V. (2021). Volohist hruntu v zalezhnosti vid elementiv tekhnolohii vyroshchuvannia vivsa v umovakh livoberezhnoho lisostepu Ukrainy [Soil moisture depending on the elements of oat cultivation technology in the conditions of the left-bank forest-steppe of Ukraine]. Ricerche scientifiche e metodi della loro realizzazione: esperienza mondiale e realtа domestiche, 1, 100–102. doi: 10.36074/logos- 12.11.2021.v1.26
25. Matviichuk, B. V. & Matviichuk, N. G. (2018). Biolohichna aktyvnist yasno-siroho lisovoho hruntu [Biological activity of clear gray forest soil for different potato fertilizer systems]. Zemlerobstvo, 1(94), 15–20.
26. Mishchenko, Y., Kovalenko, I., Butenko, A., Danko, Y., Trotsenko, V., Masyk, I., Radchenko, M., Hlupak, Z., Stavytskyi, A. (2022). Microbiological activity of soil under the influence of post–Harvest siderates. Journal of Ecological Engineering, 23(4), 122–127. doi: 10.12911/22998993/146612
27. Mishchenko, Y. G., Zakharchenko, E. A., Berdin, S.I. et.al. (2019). Herbological monitoring of efficiency of tillage practice and green manure in potato agrocenosis. Ukrainian journal of ecology, 9(1), 210–219.
28. Naydyonova, O. E. (2019). Poiednane zastosuvannia biopreparativ udobriuvalnoi ta zakhysnoi dii v orhanichnomu zemlerobstvi [Combined use of biopreparations with fertilizing and protective action in organic farming]. Biologically active preparations for plant growing. Scientific background – recommendations – practical results: Materials of the XV International Scientific and Practical Conference. Кyiv, 25–29 June 2019 / eds М.V. Patyka et. al., 134.
29. Parfenyuk, A., Kosovska, N., Borodai, V., Turovnik, Yu. (2022). Korenevi ekzometabolity, yak ekolohichnyi chynnyk u vzaiemodii kulturnykh roslyn z gruntovymy mikroorhanizmamy [Root exometabolites as an ecological factor in the interaction between cultivated plants and soil microorganisms]. Agroecological journal, 3, 62–74. doi: 10.33730/2077-4893 .3.2022.266410
30. Petrenko, S. V. (2020). Soil water regime in the fields of corn fields under different tillage practices. Bulletin of Sumy National Agrarian University. The series: Agronomy and Biology, 3(41), 23–32. doi: 10.32845/agrobio.2020.3.3
31. Sharma, S., & Gobi, T. A. (2016). Impact of drought on soil and microbial diversity in different agroecosystems of the semiarid zones. In: K. Hakeem, M. Akhtar, & S. Abdullah (eds), Plant, Soil and Microbes, 149–162. Cham: Springer. doi: 10.1007/978-3-319-27455-3_8
32. Taranenko, S. V. (2015). Vplyv riznykh tekhnolohii vyroshchuvannia kukurudzy na gruntovi mikroorhanizmy [Influence of different corn growing technologies on soil microorganism]. Naukovi dopovidi Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy, 4. URL: https://nd.nubip.edu.ua/2015_4/16.pdf 33. Telichko, L.P. (2020). Analiz ryzosfernoho mikrobiomu tsukrovoi kukurudzy za vplyvu khimichnykh i biolohichnykh protruinykiv [Analysis of rhysophere microbiome of sugar maize under the influence of chemical and biological seeds treatment pesticides]. Scientific reports of NULES of Ukraine, Series «Biology, biotechnology, ecology». 4(86). doi: 10.31548/ dopovidi2020.04.007
34. Tokmakova, L. M., Larchenko, I. V. & Kovpak, P. V. (2021). Mikrobiolohichni protsesy transformatsii roslynnykh reshtok kukurudzy za introduktsii v ahrotsenozy mikroorhanizmiv-destruktoriv orhanichnoi rechovyny [Microbiological processes of transformation of corn plant residues under introduction of destructing microorganisms in the agrocenoses]. Agriciltural Microbiology, 32, 35-47. doi: 10.35868/1997-3004.32.35-47
35. Yang, T., Lupwayi, N., Marc, S., Siddique, K., & Bainard, L. (2021). Anthropogenic drivers of soil microbial communities and impacts on soil biological functions in agroecosystems. Global Ecology and Conservation, 27, e01521. doi: 10.1016/j.gecco.2021.e01521
36. Zakharchenko, E., Datsko, O., Shevchenko, M., & Kalnaguz, A. (2021). Cellulose-destroying bacteria’s activity of chernozem soils by different methods of tillage and Leanum usage. Book of abstracts 2nd International multidisciplinary conference for young researchers «Sustainable Development Trends and Challenges under COVID-19», 26–27.
37. Zakharchenko, E., Datsko, O., Mishchenko, Y., Melnyk, A., Kriuchko, L., Rieznik, S., & Hotvianska, A. (2023). Efficiency of biofertilizers when growing corn for grain. Modern Phytomorphology, 17, 50-56. doi: 10.5281/zenodo.2023-17-200117
38. Zhatova, H., Bondarieva, L., & Koplyk, Y. (2019). Osoblyvosti ryzosfernoi mikrobioty likarskykh roslyn. [Features of the rhiospheric microbiota of medicinal plants]. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 4(38), 61-65. doi: 10.32845/agrobio.2019.4.9
39. Zhatova, H. O., Trotsenko, V. I. (2018). The structure of micromycetes communities in crop rotations with sunflower. Ukrainian Journal of Ecology, 8(1), 859-864. doi: 10.15421/2017_285
Опубліковано
2023-06-09
Як цитувати
Дацько, О. М., & Захарченко, Е. А. (2023). АКТИВНІСТЬ ЦЕЛЮЛОЗОРУЙНІВНИХ БАКТЕРІЙ ЗА РІЗНИХ ОБРОБІТКІВ ГРУНТУ ТА ПЕРЕДПОСІВНОЇ ІНОКУЛЯЦІЇ КУКУРУДЗИ. Вісник Сумського національного аграрного університету. Серія: Агрономія і біологія, 51(1), 28-36. https://doi.org/10.32782/agrobio.2023.1.4