ДЕСТРУКЦІЯ РОСЛИННИХ РЕШТОК КУКУРУДЗИ ЗА ДІЇ МІКРОБНИХ ПРЕПАРАТІВ В УМОВАХ ПІВНІЧНО-СХІДНОГО ЛІСОСТЕПУ УКРАЇНИ

Ключові слова: кукурудза, рослинні рештки, деструкція, Триходермін, Екостерн, мікроміцети

Анотація

У статті визначено ступінь деструкції рослинних решток кукурудзи за дії мікробних препаратів. Одним із способів активізації та прискорення процесу розкладання рослинних решток є використання мікробіологічних препаратів – деструкторів, що містять у своєму складі селекціоновані високоефективні штами та консорціуми мікроорганізмів-целюлозолітиків. Біодеструктор Екостерн бактеріальний – препарат на основі штамів агрономічно цінних бактерій для розкладання рослинних решток, стимуляції росту й розвитку рослин, захисту від фітопатогенів, Триходермін – високоефективний, екологічно безпечний препарат, який виготовляється на основі гриба Trichoderma viride з антагоністичними та целюлозолітичними властивостями. За результатами досліджень нами виявлено високу ефективність застосування біодеструкторів стерні для прискорення розкладання рослинних решток кукурудзи завдяки збільшенню кількості корисних мікроорганізмів у ґрунті, які є відповідальними за процеси біодеструкції. Характер дії біодеструкторів суттєво різнився упродовж періоду дії препаратів. Так, через півроку після внесення деструкторів ступінь розкладання рослинних решток кукурудзи у ґрунті на варіанті із застосуванням Триходерміну становив 13,4 %, а Екостерну – 15,2 %. На восьмий місяць деструкції інтенсивність розкладання рослинних решток збільшилась у 2,5–3 рази у всіх досліджуваних варіантах. По завершенню досліджень (10-й місяць деструкції) інтенсивність розкладання рослинних решток кукурудзи за дії біодеструкторів зросла до 66,3 % у варіанті із Триходерміном та до 64,2 % – Екостерну. Загалом, застосування Триходерміну та Екостерну сприяло збільшенню інтенсивності розкладання рослинних решток кукурудзи на 29,2 % та 27,1 % відносно контрольних показників деструкції. Найбільшу чисельність грибів роду Trichoderma на кожному етапі досліджень виявлено у варіанті із застосуванням Триходерміну, що дозволяє стверджувати про успішне адаптування та приживання біоагента препарату на рештках і в ґрунті. Проте збільшення загальної чисельність мікроміцетів спостерігалось у варіанті із обробкою Екостерном бактеріальним, що можна пояснити стимуляцією розвитку аборигенної мікрофлори ґрунту, зокрема грибів.

Посилання

1. Balayev, A. D., & Pikovska, O. V. (2016). Vykorystannja solomy u vidnovlenni rodjuchosti g'runtiv [The use of straw in the restoration of soil fertility]. “CP Comprint”, Kyiv (in Ukrainian).
2. Bezuglyj, M. D. Bulgakov, V. M. & Grynyk, I. V. (2010) Naukovo-praktychni pidhody do vykorystannja solomy ta roslynnyh reshtok [Scientific and practical approaches to the use of straw and plant residues]. Visnyk agrarnoi' nauky, № 3. 5–8 (in Ukrainian).
3. Bomba, M., Dudar, I., & Lytvyn, O. (2013). Produktyvnist' gibrydiv kukurudzy zalezhno vid ploshhi zhyvlennja [Productivity of maize hybrids depending on the feeding area of plants]. Bulletin of Lviv National Agrarian University, 17(2), 64‒67 (in Ukrainian).
4. Borowik, A. & Wyszkowska, J. (2016). Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant. Soil and Environment, 62(6), 250–255. doi: 10.17221/158/2016-PSE.
5. Bykin, A. V., & Tarasenko, O. V. (2014) Vologozabezpechennja roslyn kukurudzy za vnesennja mineral'nyh dobryv i prjamoi' sivby [Moisture provision of corn plants by the application of mineral fertilizers and direct sowing]. Scientific works of the Institute of Bioenergetic Cultures and Sugar Beet, 22, 133‒137 (in Ukrainian).
6. Centylo, L. V. & Sendec'kyj, V. M. (2014) Biologichna efektyvnist' vykorystannja biodestruktoriv [Biological effectiveness of the use of biodestructors]. Visnyk ZhNAEU. Agroekologija, 1, 2 (42), 93–99.
7. Cheneby, D., Bru, D., Pascault, N., Maron, P. A., Ranjard, L., & Philippot, L. (2010). Role of Plant Residuesin Determining Temporal Patterns of the Activity, Size, and Structure of Nitrate reducer Communites in Soil. Appl Environ Microbiol, 76 (21), 7136 –7143. doi: 10.1128/AEM.01497-10.
8. Černý, J., Balík, J., Kulhánek, M., & Nedvěd,V. (2008). The changes in microbial biomass C and N in long-term field experiments. Plant Soil Environ, 54 (5), 212–218.
9. Demianiuk, O. S., & Sherstoboieva, O. V. (2005). Potentsiina tseliulozolitychna aktyvnist runtiv riznykh ahroekosystem Ukrainy [Potential cellulosolytic activity of soils of different agroecosystems of Ukraine]. Ahroekoloichnyi zhurnal, 1, 56–59 (in Ukrainian).
10. Dindaroglu, T., Tunguz, V., Babur, E., Alkharabsheh, H.M., Seleiman, M.F., Roy, R., & Zakharchenko,E. (2022). The use of remote sensing to characterise geomorphometry and soil properties at watershed scale. International Journal of Global Warming, 27(4), 402–421. doi:10.1504/IJGW.2022.1004911.
11. Flieβbach, A. & Mäder, P. (2000). Microbial biomas sand size-ensity fractions differ between soils of organic and conventional agricultural systems. Soil Biology and Biochemistry, 32 (6), 757– 768. doi:10.1016/S0038-0717(99)00197-2
12. Furtak, K. & Gałązka, A. (2019). Edaphic factors and their influence on the microbiological biodiversity of the soil environment. Postępy Mikrobiologii-dvancements of Microbiology, 58(4), 375–384. doi:10.21307/PM-2019.58.4.37.
13. Geletuha, G. G. & Zheljezna, T. A. (2014) Perspektyvy vykorystannja vidhodiv sil's'kogo gospodarstva dlja vyrobnyctva energii' v Ukrai'ni [Prospects of using agricultural waste for energy production in Ukraine]. Analitychna zapyska BAU, 7, 31 (in Ukrainian).
14. Hospodarenko, H. M. (2013) Ahrokhimiya: pidruchnyk [Agrochemistry: a textbook]. Ahrarna osvita, K, 406 (in Ukrainian).
15. Jacinthe, P.A., Lal, R. & Kimble, J.M. (2002) Effects of Wheat Residue Fertilization on Accumulation and Biochemical Attributes of Organic Carbon in A Central Ohio Luvisol. Soil Sciens. V, 167. I. 11. 750–758.
16. Lal, R. (2004) Is crop residue a waste? Soil Water Consv, 59 (6), 136–139.
17. Litvinov, D., Litvinova, O., Borys, N., Butenko, A., Masyk, I., Onychko, V., Khomenko, L., Terokhina, N. & Kharchenko, S. (2020) The typicality of hydrothermal conditions of the forest steppe and their influence on the productivity of crops. Environmental Research. 76 (3), 84–95. doi:10.5755/j01.erem.76.3.25365.
18. Kushnar'ov, A., Kravchuk, V. & Bobrovnyj, E. (2012) Vplyv stupenja podribnennja j glybyny zakladennja solomy v g'runt na intensyvnist' i'i' rozkladannja z vykorystannjam biodestruktora Sternyfag [The influence of the degree of grinding and the depth of straw embedment in the soil on the intensity of its decomposition using the Sternifag biodestructor]. Tehnika i tehnologii' APK, 12, 24–27.
19. Mekich, M. Z., Dzhura, N. M., & Terek, O. I. (2013). Funktsionalne i prykladne znachennia biolohichnoi aktyvnosti gruntu [Functional and applied value of soil biological activity]. Biolohichni studii – Biological studies, 7(3), 247–258 (in Ukrainian).
20. Moisienko, V.V. (2015). Priorytetnist' ta shljahy pidvyshhennja produktyvnosti zernovoi' ta sylosnoi' kukurudzy [Priority and ways to increase productivity of grain and silage corn]. Bulletin of ZHNAEU, 1, 190‒200 (in Ukrainian).
21. Naydyonova, O. E. (2019). Poiednane zastosuvannia biopreparativ udobriuvalnoi ta zakhysnoi dii v orhanichnomu zemlerobstvi [Combined use of biopreparations with fertilizing and protective action in organic farming]. Biologically active preparations for plant growing. Scientific background – recommendations – practical results: Materials of the XV International Scientific and Practical Conference. Кyiv, 25–29 June 2019, 134.
22. Onychko, V. I., Naumov, Ye. O. & Senyk, I. I. (2023) Urozhajnist' kukurudzy na zerno zalezhno vid form i norm azotnyh dobryv v umovah pivnichnogo shodu Ukrai'ny [Maize yield per grain depending on the forms and rates of nitrogen fertilizers in the conditions of northeastern Ukraine]. Visnyk Sums'kogo nacional'nogo universytetu. Serija «Agronomija i biologija», 2 (52), 72–77. doi:10.32782/agrobio.2023.2.
23. Parfenyuk, A., Kosovska, N., Borodai, V. & Turovnik, Yu. (2022). Korenevi ekzometabolity, yak ekolohichnyi chynnyk u vzaiemodii kulturnykh roslyn z gruntovymy mikroorhanizmamy [Root exometabolites as an ecological factor in the interaction between cultivated plants and soil microorganisms]. Agroecological journal, 3, 62–74. doi:10.33730/2077-4893.3.2022.26641.
24. Sanchez, O. J. & Cardona, C. A. (2008) Trends in biotechnological production of fuel ethanol from different feed stocks. Bioresource Technology, 99, 5270–5295.
25. Sеndetsky, V. M. (2018) Growth and development of corn plants depending on the use of straw and green manure crops. Agrology, 1(3), 281‒285 (in Ukrainian). doi:10.32819/2617-6106.2018.13007.
26. Sharma, S., & Gobi, T. A. (2016). Impact of drought on soil and microbial diversity in different agroecosystems of the semiarid zones. In: K. Hakeem, M. Akhtar, & S. Abdullah (eds), Plant, Soil and Microbes, 149–162. Cham: Springer. doi:10.1007/978-3-319-27455-3_8.
27. Soloma, pisljazhnyvni reshtky i syderaty – agrotehnologichni elementy biologizacii' suchasnogo zemlerobstva : monografija [Straw, post-harvest residues and siderates – agrotechnological elements of biologization of modern agriculture: monograph] / [V. V. Ivanyshyn, I. A. Shuvar, M. I. Bahmat, V. M. Sendec'kyj ta in.] ; za zag. red. I. A. Shuvara, V. M. Sendec'kogo (2020). Symfonija forte, Ivano-Frankivs'k, 292.
28. Tokmakova, L. M., Larchenko, I. V. & Kovpak, P. V. (2021). Mikrobiolohichni protsesy transformatsii roslynnykh reshtok kukurudzy za introduktsii v ahrotsenozy mikroorhanizmiv-destruktoriv orhanichnoi rechovyny [Microbiological processes of transformation of corn plant residues under introduction of destructing microorganisms in the agrocenoses]. Agriciltural Microbiology, 32, 35-47 (in Ukrainian). doi: 10.35868/1997-3004.32.35-47.
29. Tsentylo, L. V., & Sendetskyi, V. M. (2014). Biolohichna efektyvnist vykorystannia biodestruktoriv [Biological efficiency of biodestructors use]. Visnyk ZhNAEU, Herald of ZhNAEU, 2 (42), 1, 93–99 (in Ukrainian).
30. Volkohon,V. V., Nadkernychna, O. V., Tokmakova, L. M., Melnychuk, T. M., & Chaikovska, L. O. (2010). Eksperymentalna gruntova mikro-biolohiia: monohrafiia [Experimental soil microbiology: monohraph]. Ahrarna nauka, Kyiv (in Ukrainian).
31. Zeng, X., Ma, Y. & Ma, L. (2007) Utilization of straw in biomass energy in China. Renewable and Sustainable Energy Reviews, 11, 976–987.
32. Zhang, X. Q., Wang, Z. F., Cen, M. Y., Bai, H. H. & Ta, N. (2021) Analysis of yield and current comprehensive utilization of crop straws in China. Journal of China Agricultural University, 26, 30–41.
33. Zubko, V., Khvorost, T., Zamora, O. & Onychko, V. (2020) Methods of maintaining soil depth evenness during disk tillage. Scientia agriculturae bohemica. 51 (1), 22–30. doi:10.2478/sab-2020-0004.
Опубліковано
2023-12-27
Як цитувати
Синиця, О. М., Оничко, В. І., & Пиріг, О. В. (2023). ДЕСТРУКЦІЯ РОСЛИННИХ РЕШТОК КУКУРУДЗИ ЗА ДІЇ МІКРОБНИХ ПРЕПАРАТІВ В УМОВАХ ПІВНІЧНО-СХІДНОГО ЛІСОСТЕПУ УКРАЇНИ. Вісник Сумського національного аграрного університету. Серія: Агрономія і біологія, 53(3), 79-84. https://doi.org/10.32782/agrobio.2023.3.11