DEPENDENCE OF REPRODUCTIVE QUALITIES OF SOWS ON THE BREED AND BREEDING METHODS IN THE CONDITIONS OF A BREEDING FEEDER
Abstract
The article studied the productive qualities of sows of the main maternal breeds of Great White and Landrace of Irish origin under the purebred version of their breeding and direct and backcrossing. It was established that the total number of piglets in the nest at birth and multifertility of sows depended more on breeding methods, while high fertility depended on the breed of the mother. The difference between the sows of the Great White and Landras breeds under purebred breeding was 0.64% in terms of multifertility in purebred breeding and 0.66% in crossbreeding. While the difference between the purebred variant of breeding and crossing animals of these breeds reached 2.6%. At the same time, the weight of the litter of piglets at birth depended both on the breed of the mother and on the breeding method. The interbreed difference in the level of manifestation of this trait was 1.4–3.7% for purebred breeding and crossbreeding, respectively. The difference in the value of this trait between the purebred version of breeding and crossbreeding was 6.7–9.2%. It was proved that the survival of piglets before weaning depended more on the breed of sows, while their number in the nest at the time of weaning, individual weight and weight of the nest during this period depended more on the breeding method. Thus, the advantages of sows of the landrace breed over their large white counterparts in terms of preservation amounted to 0.5–1.2%, at the same time, the difference was 0.1–0.5% for different breeding options of these breeds. The difference in the number of piglets at weaning between animals with different breeding methods was 2.4–3.2%, and between sows of the original breeds for both breeding options was only 0.1–0.8%. The difference in individual live weight of piglets at the time of weaning was 4.2–5.8% for different methods of breeding animals of the original breeds, while the interbreed difference was 1.4–2.9% for purebred breeding and crossing, respectively. At the same time, the interbreed difference in weight of the litter of piglets at weaning was 1.4% for purebred breeding and 3.7% for their crossbreeding, and the difference between the purebred version of breeding and crossing animals of these breeds was 6.7–9.2%. It was determined that the breeding method had a greater influence on the growth of piglets in the weaning period than the breed of the dams. Average daily gains of sows depended by 1.8–2.5% on the breed of the sow and by 6.8–7.7% on the breeding method. Which caused the difference in absolute gains between the two breeds for purebred breeding to be 2.5% and for crossbreeding to be 0.8%. At the same time, the difference according to this indicator between the purebred version of breeding and crossing for both breeds amounted to 6.8–5.0%. And as a result, the interbreed difference in the average weight of one piglet when weaned for purebred breeding amounted to 2.9%, and when crossing – 1.4%. At the same time, the difference for this trait between the purebred version of breeding and crossbreeding was 5.8% for the large white breed, and 4.2% for the landrace breed. It was established that the reproductive qualities of sows depended more significantly on the method of breeding than on the breed of the sow. Thus, the difference between sows of the main maternal breeds in the value of complex indices for purebred breeding amounted to 0.1–0.4%, and when they were crossed, it was only 0.1%. At the same time, the difference according to the complex indices, which were calculated for purebred breeding and crossing of the respective breeds, was 3.5–4.1% in the large white breed and 3.42–4.0% in the landrace breed.
References
2. Baban, O. A. (2017). Rozvedennia v svynarstvi. Rozvedennia svynei. Korychnevyi bloh. [Breeding in the pig industry. Pig breeding. Brown blog] (in Ukrainian). Rezhym dostupu: http://pig.tekro.ua/viroshchennya/item/27–shreshhuvannja–u– svinarstvi.html.) Accessed on 27.05.2023.
3. Balnykov, A. A, Hrydiushko, Y. F., Hrydiushko, E. S. (2019). Otsenka byolohycheskykh osobennostei svynei razlychnoi sochetaemosty v uslovyiakh promыshlennoi tekhnolohyy [Evaluation of the biological characteristics of pigs of different compatibility in industrial technology]. Svynarstvo. Mizhvid. temat. nauk. zb. IS i APV NAAN. Poltava [Pig breeding. Mіzhvіd. subject. Sciences. zb. ІС i APV NAAS. Poltava], 73, 186–191. (in Ukrainian)
4. Barbato, M., Hailer, F., Orozco–terwengel, P., Kijas, J., Mereu, P., Cabras, P. (2017). Genomic signatures of adaptive introgression from European mouflon into domestic sheep. Sci Rep., 7, 7623. https://doi.org/10.1038/s41598–017–07382–7
5. Berezovskyi, N. D., Hyria, V. N., (1991). Otsenka kombynatsyonnoi sposobnosty spetsyalyzyrovannikh typov krupnoi beloi porodi svynei [Evaluation of the combination ability of specialized types of large white breed of pigs]. Tsytolohyia y henetyka [Cytology and genetics], 25(6), 56–60. (in Ukrainian)
6. Berezovskyi, M. D., Voloshchuk, V. M., Hryshyna, L. P., Vashchenko, P. A., Vovk, V. O., Voloshchuk, O. V. (2018). Prohrama selektsii velykoi biloi porody svynei v Ukraini na 2018–2025 roky [The breeding program of the large white breed of pigs in Ukraine for 2018–2025]. Poltava, TOV «Firma «Tekhservis» [Poltava, Techservice Firm LLC], 111 p. (in Ukrainian)
7. Bosse, M., Lopes, M.S., Madsen, O., Megens, H. J., Crooijmans, R. P., Frantz, L. A. (2015). Artificial selection on introduced Asian haplotypes shaped the genetic architecture in European commercial pigs. Proceedings of the Biological Sciences, 282, pii:20152019. DOI: 10.1098/rspb.2015.2019
8. Bosse, M. (2018). A Genomics Perspective on Pig Domestication. In (Ed.), Animal Domestication. IntechOpen. https:// doi.org/10.5772/intechopen.82646
9. Chen, N., Cai, Y., Chen, Q., Li, R., Wang, K., Huang, Y. (2018). Whole–genome resequencing reveals worldwide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat Commun, 9, 1–13. https://doi.org/10.1038/s41467–018–04737–0
10. Crispo, E., Moore, J. S., Lee–Yaw, J. A., Gray, S. M., Haller, B. C. (2011). Broken barriers: human–induced changes to gene flow and introgression in animals: an examination of the ways in which humans increase genetic exchange among populations and species and the consequences for biodiversity. BioEssays., 33, 508–518.
11. Cucchi, T., Hulme-Beaman, A., Yuan, J., Dobney, K. (2011). Early Neolithic pig domestication at Jiahu, Henan Province, China: Clues from molar shape analyses using geometric morphometric approaches. J Archaeol Sci., 38, 11–22.
12. Eriksson, J., Larson, G., Gunnarsson, U., Bed’hom, B., Tixier-Boichard, M., Strömstedt, L. (2008). Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genet., 4, e1000010 https://doi.org/10.1371/ journal.pgen.1000010
13. Fediaieva, A. S. (2019). Obgruntuvannia efektyvnoi systemy porodno–liniinoi hibrydyzatsii za vykorystannia terminalnykh knuriv [Justification of an effective system of breed–line hybridization using terminal boars]. Autoref. thesis Ph.D. Kharkiv, 19. (in Ukrainian)
14. Hallauer, A. R., Carena, M. J., Miranda Filho, J. D. (2010). Quantitative Genetics in Maize Breeding, 6. Berlin: Springer Science & Business Media. https://link.springer.com/book/10.1007/978-1-4419-0766-0
15. Heikkinen, M. E., Ruokonen, M., White, T. A., Alexander, M. M., Gündüz, I., Dobney, K. M. (2020). Long-term reciprocal gene flow in wild and domestic geese reveals complex domestication history. G3 Genes Genomes Genet., 10, 3061–3070. https://doi.org/10.1534/g3.120.400886
16. Herbst, R. H., Bar-Zvi, D., Reikhav, S., Soifer, I., Breker, M., Jona, G. (2017). Heterosis as a consequence of regulatory incompatibility. BMC Biol., 15, 38. doi: 10.1186/s12915–017–0373–7
17. Hetia, A. A. (2009). Orhanizatsiia selektsiinoho protsesu v suchasnomu svynarstvi: monohrafiia [Assessing the quality of sows of a great white breed for different methods of breeding]. Poltava: Poltavskyi literator [Scientific dopovіdі NAU], 192. (in Ukrainian)
18. Holm, B. (2004). Genetic correlations between reproduction and production traits in swine. J. Anim. Sci., 2, 3458–3464.
19. Hryshyna, L. P., Piddubna, A. M., Rud, S. S. (2021). Vykorystannia svynei miasnykh porid vitchyznianoi selektsii u systemi hibrydyzatsii Ukrainy, Miasni henotypy svynei: sohodennia ta perspektyvy: materialy Mizhnarodnoi naukovopraktychnoi konferentsii naukovo-pedahohichnykh pratsivnykiv ta molodykh naukovtsiv [The use of pigs of meat breeds of domestic breeding in the hybridization system of Ukraine, Meat genotypes of pigs: present and prospects.: materials of the International scientific and practical conference of scientific and pedagogical workers and young scientists], Odeskyi derzhavnyi ahrarnyi universytet. Navchalno-naukovyi instytut biotekhnolohii ta akvakultury [Odessa State Agrarian University. Educational and Scientific Institute of Biotechnology and Aquaculture]. Odesa, 8–11. (in Ukrainian)
20. Huang, Y. H., Lee, Y. P., Yang, T. S. Roan, S. W. (2003). Effects of Sire Breed on the Subsequent Reproductive Performances of Landrace Sows. Asian Australasian Journal of Animal Sciences, 16 (4), 7. DOI: 10.5713/ajas.2003.489.
21. Huang, W., Mackay, T. F. (2016). The genetic architecture of quantitative traits cannot be inferred from variance component analysis. PLoS Genet., 12, e1006421. doi: 10.1371/journal.pgen.1006421
22. Iacolina, L., Corlatti, L., Buzan, E., Safner, T., Šprem, N. (2019). Hybridisation in European ungulates: an overview of the current status, causes, and consequences. Mamm Rev., 49, 45–59
23. Jia, Y., Jannink, J. L. (2012). Multiple–trait genomic selection methods increase genetic value prediction accuracy. Genetics, 192, 1513–1522. doi: 10.1534/genetics.112.144246
24. Khramkova, O. M. (2019). Reproductive qualities of sows of different combinations of breeds and types. Theoretical and Applied Veterinary Medicine, 7(2), 115–119. (in Ukrainian) doi: 10.32819/2019.71021
25. Knecht, D., Srodon, S., Duziński, K. (2015). Breed on selected reproductive performance parameters of sows. Arch. Anim. Breed., 58, 49–56.
26. Krasnoshchok, O. O. (2017). Vidtvoriuvalni yakosti svynomatok za riznykh metodiv rozvedennia [Revealing the quality of sows for different methods of breeding]. Naukove zabezpechennia innovatsiinoho rozvytku ahropromyslovoho kompleksu v umovakh zmin klimatu: mizhnarodna naukovo–praktychna konferentsiia molodykh vchenykh i spetsialistiv, Dnipro [Scientific security of innovative development of the agro-industrial complex in the minds of climate change: international scientific and practical conference of young scientists and specialists, Dnipro], 179. (in Ukrainian)
27. Krupa, E., Wolf, J. (2013). Simultaneous estimation of genetic parameters for production and litter size traits in Czech Large White and Czech Landrace pigs. Czech J. Anim. Sci., 58(9), 429–436.
28. Lisnyi, V. A. (1997). Otrymannia bahatorazovoho heterozysa v svynarstvi [Acquisition of multiple heterosis in pig breeding]. Tavriiskyi naukovyi visnyk Vypusk [Taurian Scientific Bulletin], 2, 79–83. (in Ukrainian)
29. Liu, H., Wang, Q., Chen, M., Ding, Y., Yang, X., Liu, J. (2020). Genome-wide identification and analysis of heterotic loci in three maize hybrids. Plant Biotechnol. J., 18, 185–194. doi: 10.1111/pbi.13186
30. Mallet, J. (2005). Hybridization as an invasion of the genome. Trends Ecol Evol., 20, 229–237. https://doi.org/10.1016/j.tree.2005.02.010
31. Merks, J., Mathur, P., Knol, E. (2012). New phenotypes for new breeding goals in pigs. Animal, 6(04), 535–543.
32. Mignon-Grasteau, S., Boissy A., Bouix J., Faure, J. M., Fisher, A. D., Hinch, G. N. (2005). Genetics of adaptation and domestication in livestock. Livest Prod Sci., 93, 3–14. https://doi.org/10.1016/j.livprodsci.2004.11.001
33. Mihaylov, N. V. (2012). Svinovodstvo: perspektivyi otrasli i problemyi [Pig breeding: industry perspectives and problems]. Perspektivnoe svinovodstvo: Teoriya i praktika [Promising Pig Breeding: Theory and Practice], 2, 1–4. (in Ukrainian)
34. Mirkena, T., Duguma, G., Haile, A., Tibbo, M., Okeyo, A.M., Wurzinger, M. (2010). Genetics of adaptation in domestic farm animals: A review. Livestock Science, 132, 1–12. https://doi.org/10.1016/j.livsci.2010.05.003
35. Mykhalko, O. H., Povod, M. H., Andriichuk, V. F., (2021). Vplyv metodiv rozvedennia ta viku svynomatok danskoi selektsii na yikh produktyvnist [Influence of methods of breeding and breeding of Danish breeding sows on their productivity]. «NTB IT NAAN» ["NTB IT NAAN"], 125, 161–179. (in Ukrainian)
36. Mykhalko, O. G. (2021). Suchasnyi stan ta shliakhy rozvytku svynarstva v sviti ta Ukraini [The current state and ways of development of pig farming in the world and in Ukraine]. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriia "Tvarynnytstvo" [Bulletin of the Sumy National Agrarian University. Series "Livestock"], 3, 60–77. (in Ukrainian) https://doi.org/10.32845/bsnau.lvst.2021.3.9
37. Nwakpu, P. E., Ugwu, S. O. C. (2009). Heterosis for litter traits in native by exotic inbred pig crosses. Journal of Tropical Agriculture, Food, Environment and Extension, 8(1), 31–37.
38. Onyshchenko, A. O. (2013). Promyslove skhreshchuvannia i hibrydyzatsiia, yikh efektyvnist u svynarstvi [Promislove breeding and hybridization, their effectiveness in pig breeding]. Svynarstvo [Pig breeding], 62, 72–76. (in Ukrainian)
39. Ottenburghs, J. (2021). The genic view of hybridization in the Anthropocene. Evol Appl., 14, 2342–2360. https://doi.org/10.1111/eva.13223
40. Phelps, A. (1976). New hybrid fromesteem Europe. Pig international, 4(6), 10–14. https://doi.org/10.1016/j.crhy.2013.12.002
41. Pelykh, V. H., Ushakova, S. V., Levchenko, M. V. (2020). Vysokoproduktyvni varianty poiednan knuriv ta svynomatok importnykh miasnykh henotypiv [Highly productive options for breeding sows and imported meat genotypes. Integration of education, science and business in the modern environment: winter disputes: abstracts of add]. Intehratsiia osvity, nauky ta biznesu v suchasnomu seredovyshchi: zymovi dysputy: tezy dop. I mizhnarodnoi naukovo–praktychnoi Internet–konferentsii, Dnipro [I international scientific and practical Internet conference, Dnipro], 2, 539–542. (in Ukrainian)
42. Piotrovych, N. A. (2017). Formuvannia vidtvoriuvalnykh yakostei svynomatok ta otsinka yikh kombinatsiinoi zdatnosti [Formation of reproductive qualities of sows and assessment of their combining ability] Auto–abstract of the candidate's thesis. Mykolaiv, 19.
43. Price, E. O. (1984). Behavioral aspects of animal domestication. Q Rev Biol., 59, 1–32. https://doi.org/10.1086/413673
44. Povod, M. H., Mykhalko, O. H., Kremez, M. I. (2021) Vidtvoriuvalni yakosti svynomatok materynskykh ta batkivskoi linii [Revealing the quality of sows of mother and father lines. Bulletin of the Sumy National Agrarian University]. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriia "Tvarynnytstvo" [Bulletin of the Sumy National Agrarian University. Series "Tvarinnitstvo"], 4(47), 133–138. (in Ukrainian) https://doi.org/10.32845/bsnau.lvst.2021.4.22
45. Povod, M. H., Khramkova, O. M. (2016). Vidtvoriuvalni yakosti svynomatok f1 riznoi selektsii ta intensyvnist rostu yikh pryplodu pry hibrydyzatsii v umovakh promyslovoho kompleksu [The productive capacity of sows f1 of different selection and the intensity of growth of their offspring during hybridization in the minds of the industrial complex]. Naukovo-tekhnichnyi biuleten IT NAAN [Scientific and technical bulletin of IT NAAS], 116, 121–156. (in Ukrainian)
46. Randi, E. (2008). Detecting hybridization between wild species and their domesticated relatives. Mol Ecol., 17, 285–293.
47. Shull, G. H. (1981). Hybridization methods in corn breeding. Amer. Breeding Magazine, 1, 98–107. https://doi.org/10.1093/jhered/1.2.98
48. Tomin, E. F. (2007). Assessing the quality of sows of a great white breed for different methods of breeding. Scientific dopovіdі NAU. 2(7). [Elektronnyi resurs] (in Ukrainian). Rezhym dostupu: http://www.nbuv.gov.ua/e–Journals/ nd/2007–2/07tyfmoc.pdf Accessed on 27.05.2023.
49. Topikha, V. S., Lykhach, V. Ia., Lykhach, A.V. (2013). Miasni yakosti svynei porody landras za riznykh metodiv rozvedennia [Meat qualities of landrace pigs under different breeding methods]. Zb. nauk. prats Vinnytskoho NAU. Seriia: Silskohospodarski nauky [Coll. of science works of the Vinnytsia National University of Science and Technology. Series: Agricultural Sciences], 5(78), 217–221. (in Ukrainian)
50. Trouwborst, A. (2014). Exploring the legal status of wolf–dog hybrids and other dubious animals: International and EU law and the wildlife conservation problem of hybridization with domestic and alien species. Rev Eur Comp Int Environ Law., 23, 111–124. https://doi.org/10.1111/reel.12052
51. Tsereniuk, O. M., Khvatov, A. I., Stryzhak, T. A. (2010). Obiektyvna otsinka materynskoi produktyvnosti svynei [Objective evaluation of maternal productivity of pigs]. Tavriiskyi naukovyi visnyk [Taurian Scientific Herald], 2(I), 221–227. (in Ukrainian)
52. Ushakova, S. V. (2020). Variants of combined boars and sows of meat genotypes on the level of reproductive qualities. [Elektronnyi resurs] (in Ukrainian). Rezhym dostupu: http://dspace.ksau. kherson.ua/ handle/123456789/102 5 Accessed on 27.05.2023.
53. Van, V. T. K., Due, N. V. (1999). Heritabilities, genetic and phenotypic correlations between reproductive performance in Mong Ca1 and Large White breeds. Proc. Assoc. Advmt/Anim. Breed. Genet., 4(3), 463. https://eurekamag. com/research/003/462/003462772.php
54. vonHoldt, B. M., Brzeski, K. E., Wilcove, D. S., Rutledge, L. Y. (2018). Redefining the role of admixture and genomics in species conservation. Conserv Lett., 11, 1–6.
55. Warmuth, V., Eriksson, A., Bower, M. A., Barker, G., Barrett, E., Hanks, B. K. (2012). Reconstructing the origin and spread of horse domestication in the Eurasian steppe. Proc Natl Acad Sci USA, 109, 8202–8206. DOI: 10.1073/ pnas.1111122109
56. Xu, Y., Li, P., Zou, C., Lu, Y., Xie, C., Zhang, X. (2017). Enhancing genetic gain in the era of molecular breeding. J. Exp. Bot., 68, 2641–2666. doi: 10.1093/jxb/erx135 57. Zeder, M. A. (2012). The domestication of animals. J Anthropol Res Compet., 68, 161–190. https://doi.org/10.3998/ jar.0521004.0068.201