STUDY OF SOIL DENSITY BY A NON-DESTRUCTIVE METHOD
Abstract
The article presents the results of theoretical and experimental determining the relationship between soil density and moisture content by the induction method. It is established that these characteristics can be described by second-order models and used to develop means for non-contact on-stream determination of soil density and structure. The determination of magnetic susceptibility is a promising method for the study of classes of substances, which allows determining the internal structure of substances and the nature of their interactions. In this case, the soil can be considered a magnetic material that interacts with a magnetic field, the characteristics of which can be determined by specific energy changes in the magnetization source. According to its chemical composition, soil can be classified as a composite material based on diamagnetic and paramagnetic. The dependence of magnetic permeability in the range of magnetic field changes of 0.85–1.85 MHz for a density of 1.0–1.4 g/cm3 and a moisture content of 0–30 % were analyzed. The research results are promising for the development of technologies and means for remote determination of soil agrophysical parameters. The research results can be adapted to the determination of agrochemical composition that may be related to the magnetochemical parameters of the soil. The purpose of the research: Modeling of the method of remote (non-contact) determination of soil agrophysical parameters by induction method, establishing the relationship of soil agrophysical parameters in a variable induction field with soil magnetic permeability and the impact on the process of determining moisture content. Research methods: Analytical studies of the principles of interaction of a magnetic field with dia- and paramagnets. Experimental studies of the interaction of soil samples with an alternating induction field. Analysis of nonlinear models of soil-magnetic field interactions. Comparison of theoretical and experimentally obtained characteristics within the ranges of soil interactions with an induction field. Results of the study. Various means and methods of on-stream determination of magnetic permeability based on the magnetization curve are systematized. Promising methods of on-stream determination of soil density based on the characteristics of magnetic susceptibility and viscosity are substantiated.
References
2. Anyskevich L.V., Voytuk D.G., Zaharin F.M., Ponomarenko S.O. Systema tochnogo zemlerobstva – [Precision farming systems]. Kyiv : NUBiP Ukrainy, 2018. 566 p. [in Ukrainian]
3. Bariakhtar V.G., Dovguj S.О. Bozhynova F.Y. Kiriukhina О.О. Fizika : Pidruchnyk dlia 11 klasu – [Physics : a textbook for the 11th grade]. Kharkiv : Ranok, 2019. 272 p. [in Ukrainian]
4. Bilecskyi V.S. Mala hyrnicha encyclopedia. U 3 t. Т1 – [Small chemical encyclopedia. In 3 volumes. Vol. 1]. Donetsk : Donbas, 2004. 640 p. [in Ukrainian]
5. Dlouhá Š., Petrovský E., Kapička A., Borůvka L., Ash C., Drábek O. Investigation of polluted alluvial soils by magnetic susceptibility methods: a case study of the Litavka River. Soil and Water Research. 2013. Vol. 151. P 151–157. doi: 10.17221/14/2013-SWR
6. Farzad Shirzaditabar and Richard J.Heck. Characterization of soil magnetic susceptibility: a review of fundamental concepts instrumentation and applications. Canadian Journal of Soil Science. 2022. Vol. 102(2). P. 231–251. doi: 10.1139/cjss-2021-0040
7. Freddy A., Diaz-Gonzalez, Jose Vuelvas, Carlos A. Correa, Victoria E. Vallejo, D. Patino. Machine learning and remote sensing techniques applied to estimate soil indicators : review. Ecological Indicators. 2021. doi: 10.1015/j.ecolind.2021.108517
8. Hanxiao X., Yingui C., Gubai L. Variability in reconstructed soil bulk density of a high moisture content soil, a study on feature identification and ground penetrating radar detection. Environ Earth Sci. 2022. Vol. 81. doi: 10.1007/s12665-022-10365-1
9. Hossain M. Shahadat G.K., Mustafizur M. Rahman, Solaiman A.R.M., Alam M. Saiful, Rahman M. Mizanur & M.A. Baset Mia. Estimating Electrical Conductivity for Soil Salinity Monitoring Using Various Soil-Water Ratios Depending on Soil Texture. Communications in Soil Science and Plant Analysis. 2020. Р. 635–644. doi:10.1080/00103624.2020.1729378
10. Hudzʹ V.P., Primak I.D., Budyonny Yu.V., Tanchik S.P. Zemlerobstvo : textbook – [Agriculture : textbook]. Kyiv : Сentr uchbovoi literaturі, 2010. 464 p. [in Ukrainian]
11. Ivaniuta M., Kravchuk V., & Ramus M. Forecast for the Adaptive Tillage System. International Journal of Life Science and Agriculture Research. 2023. Vol. 2(7). Р.193–199. doi: 10.55677/ijlsar/V02I07Y2023-06
12. Kamran Azizi, Shamsollah Ayoubi, José A.M. Demattê. Controlling factors in the variability of soil magnetic measures by machine learning and variable importance analysis. Journal of Applied Geophysics. 2023. doi: 10.1016/j.jappgeo.2023.104944.
13. Khilov V.S. Teoreticni zasady ektrotehniki – [Theoretical Fundamentals of Electrical Engineering]. Dnipro, 2018. 445 p.
14. Kravchuk V.I., Sinchenko V.M., Ivaniuta M.V., Shustik L.P. Potokove vyznachennia shchilnosti hruntu: stan i prohnoz doslidzhen – [Current determination of soil density: research status and forecast]. The latest technologies in the agroindustrial complex: research and management. 2022. Vol. 30(44). P. 107–115. doi: 10.31473/2305-5987-2022-1-30(44)-11 [in Ukrainian]
15. Kravchuk V., Ivaniuta M., Bratishko V., Gumeniuk Y., Kurka V. ON-STREAM SOIL DENSITY MEASURING, INMATEH. 2023. P. 665–672. doi: 10.35633/inmateh-69-64
16. Lawrence Que. Physical methods in bioinorganic chemistry: spectroscopy and magnetism. University Science Books, 2011. P. 345–348.
17. Lundgren Julia & Grémiaux Alexandre & Eberhardt Jacob. Theoretical study of the interaction between an ion-protein complex and an extremaly weak low-frequency combined magnetic field. 2013. doi: 10.13140/2.1.5057.9524
18. Mohamed Abdel-Mohsen & Paleologos Evan (2018). Magnetic Properties of Soils. doi: 10.1016/B978-0-12-804830-6.00015-6
19. Müller K.H. Magnetic Viscosity. 2001. doi: 10.1016/B0-08-043152-6/00869-X
20. Neli Jordanova. Soil Magnetism Applications in Pedology. Environmental Science and Agriculture. Academic Press, 2017. 445 p.
21. Orchard A.F. Magnetochemistry. Oxford Chemistry Primers. Oxford University Press, 2003. ISBN 0-19-879278-6.
22. Rekveldt M., Bouwman Wim, Kraan W.H., Grigoriev, S.V., Uca Okan & Keller T. Overview of new Larmor precession techniques. Applied Physics. 2002. Vol. A 74. P. 323–325. doi: 10.1007/s003390101096
23. Różański Adrian. Relating thermal conductivity of soil skeleton with soil texture by the concept of “local thermal conductivity fluctuation”. Journal of Rock Mechanics and Geotechnical Engineering. 2022. Vol. 14. Iss. 1. P. 262–271. ISSN 1674-7755. doi: 10.1016/j.jrmge.2021.06.008
24. Ruh A., Kiselev V.G. Calculation of Larmor precession frequency in magnetically heterogeneous media. Concepts Magn Reson. 2019. Part A. doi: 10.1002/cmr.a.21472
25. Saidati Bouhlassa, Naima Bouhsane. Assessment of the impacts of land-use change and slope position on soil loss by magnetic susceptibility-based models. International Journal of Sediment Research. 2023. Vol. 38(3). P. 455. doi: 10.1016/j.ijsrc.2022.11.006
26. Sashini Pathirana, Sébastien Lambot, Manokarajah Krishnapillai. Ground-Penetrating Radar and Electromagnetic Induction. Challenges and Opportunities in Agriculture. Remote Sensing. 2023. Vol. 15(11). P. 2932. doi: 10.3390/rs15112932
27. Syrotiuk V.D., Miroshnychenko Yu.B. Fizyka i astronomiia : pidruchnyk dlia 11 klasu – [Physics and astronomy : a textbook for the 11th grade]. Kyiv : Geneza, 2019. 368 p. [in Ukrainian]
28. Volodin M.O. Osnovy zemelʹnoho kadastru : navchalʹnyy posibnyk – [Basics of land cadastre : tutorial]. Kyiv : Instytut zmistu i metodiv navchannya MON Ukrayiny, 2002. 352 p. [in Ukrainian]
29. Yang Y., Shang K., Xiao C., Wang C., Tang, H. Spectral Index for Mapping Topsoil Organic Matter Content Based on ZY1-02D Satellite Hyperspectral Data in Jiangsu Province. China. ISPRS Int. J. Geo-Inf. 2022. Vol. 11. P. 111. doi: 10.3390/ijgi11020111
30. Zhang X., Zhang J., Li L., Zhang Y., Yang G. Monitoring Citrus Soil Moisture and Nutrients Using an IoT Based System. Sensors. 2017. Vol. 17. P. 447. doi: 10.3390/s17030447