ПРОБЛЕМИ І ПЕРСПЕКТИВИ РОЗРОБКИ ТЕХНОЛОГІЇ МОДИФІКАЦІЇ ПОВЕРХОНЬ ДЕТАЛЕЙ НАСОСІВ АТОМНИХ ЕЛЕКТРОСТАНЦІЙ
Анотація
В статті проведений аналіз конструктивних і технологічних особливостей насосного обладнання, що використовується на атомних електростанціях (АЕС). Аналіз літературних джерел показав, що насосні агрегати АЕС працюють у важких умовах експлуатації (високих тисках, швидкостях, криогенних і підвищених температурах, впливу радіаційного опромінювання) та піддаються негативному впливу навколишнього середовища. При цьому їх деталі підлягають різним видам зносу: окислювальному, абразивному, кавітації, утомі, фреттинг-корозії, електроерозії тощо. Дослідженнями і аналізом методів підвищення параметрів якості поверхонь деталей встановлено, що до найбільш ефективних способів управління параметрами якості поверхневих шарів слід віднести технології, що вживають концентровані потоки енергії (КПЕ), при використанні яких протікають нерівноважні умови нагрівання та охолодження, що дозволяє формувати принципово інші, ніж за традиційними методами обробки, структури поверхневого шару. Літературними та патентними дослідженнями доведено, що однією з найперспективніших сучасних технологій, здатної керувати параметрами якості поверхонь деталей і яка здійснюється шляхом застосування КПЕ, є електроіскрове легування, завдяки якому в поверхневих шарах формуються поверхневі структури, що мають унікальні фізико-механічні та трибологічні властивості на нанорівні. В роботі проаналізовані особливості формування поверхневих шарів технологіями електроіскрового легування (ЕІЛ) і виявлені резерви до їх удосконалення за рахунок дослідження впливу продуктивності обробки (Q), тобто кількості обробленої площини в одиницю часу (см2/хв), на параметри якості покриттів. Також визначені шляхи удосконалення технологій ЕІЛ для підвищення надійності деталей насосного обладнання АЕС шляхом: підвищення їх жаростійкості, формування самозмазувальних покриттів, розробки технологій наноструктурування стальних поверхонь і формування захисних покриттів тощо.
Посилання
2. Antony Joseph, Athira S. Vijayan, C. Muhammed Shebeeb, K. S. Akshay, Kevin P. John Mathew & V. Sajith (2023). A review on tailoring the corrosion and oxidation properties of MoS2-based coatings. Journal of Materials Chemistry A, 7, 3172-3209. https://doi.org/10.1039/d2ta07821j
3. Chalyi D.O., Tarnavskyi A.B., Sukach R.Iu. & Veselivskyi R.B. (2020). Tekhnohenna bezpeka AES. [Man-made safety of nuclear power plants]: Navch. posibn.; Ch. II. Derzh. sluzhba Ukrainy z nadzvychainykh sytuatsii; Lviv. derzh. un-t bezpeky zhyttiediialnosti. Lviv: Kameniar. 340 p. (in Ukrainian)
4. Chang-bin T., Dao-xin L., Zhan W. & Yang G. (2011). Electro-spark alloying using graphite electrode on titanium alloy surface for biomedical application. Applied surface Science. 257(15), 6364 – 6371.
5. CHP Technology. A detailed guide for CHP developers – Part 2. Crown copyright 2008. Department of Energy & Climate Change. – 64 p. Elektronnyi resurs.URL: https://www.gov.uk/government/collections/combined-heat-and-powerchp-developers-guides
6. Gaponova O.P., Antoszewski B., Tarelnyk V.B., Kurp P. Myslyvchenko O.M. & Tarelnyk N.V. (2021). Analysis of the Quality of Sulfomolybdenum Coatings Obtained by Electrospark Alloying Methods. Materials. 2021, 14, 6332. https://doi.org/10.3390/ma14216332
7. Gaponova O.P., Tarelnyk V.B., Antoszewski B., Myslyvchenko O.M. & Hoffman J. (2022). Technological Features for Controlling Steel Part Quality Parameters by the Method of Electrospark Alloying Using Carburezer Containing Nitrogen—Carbon Components. Materials, 15(17), 6085.
8. Haponova O.P., Myslyvchenko O. M., Pyrohov V.O., Hapon O.O. & Lazarenko A.D. Sposib tsementatsii stalevykh detalei elektroiskrovym lehuvanniam [The method of cementation of steel parts by electrospark alloying]. Pat. na korysnu model 142822 UA, MPK C23C 8/00, C23C 28/00; zaiavl. 11.02.2020; opubl. 25.06.2020, Biul. № 12, 2020. (in Ukrainian)
9. Haponova O.P., Tarelnyk N.V., Tarelnyk V.B., Zhylenko T.I., Myslyvchenko O.M., Dudchenko V.V. & Holub N.R. Sposib pidvyshchennia znosostiikosti stalevykh detalei obladnannia, yake pratsiuie v umovakh radiatsiinoho vyprominiuvannia. [A method of increasing the wear resistance of steel parts of equipment that operates under radiation conditions]: pat. 152967 Ukrainy na korysnu model, MPK (2023.01), B23H 1/06. / –u 202203922; opubl. 03.05.2023, Biul. № 18. (in Ukrainian)
10. Haponova O.P., Tarelnyk V.B., Zhylenko T.I. & Tarelnyk N.V. Sposib alituvannia stalevykh detalei [The method of alitizing steel parts]: pat. 153741 Ukrainy na korysnu model, MPK (2006): B23H 9/00, B23H 1/00, C23C 8/60 (2006.01), C23C 10/48 (2006.01), opubl. 23.08.2023, Biul. № 34. (in Ukrainian)
11. Herman V.F. (2014). Nadiinist hidromashyn i hidropryvodiv: konspekt lektsii [Reliability of hydraulic machines and hydraulic drives: lecture notes] – Sumy: Sumskyi derzhavnyi universytet. – 84 p. (in Ukrainian)
12. HND 34.09.453.2003. Rozrakhunok pokaznykiv nadiinosti dlia elektrostantsii, teplovykh merezh ta enerhokompanii [Calculation of reliability indicators for power plants, heating networks and energy companies]. – Metodyka. – Ofits. Vyd., 2003. – 26 p. Elektronnyi resurs. URL: https://online.budstandart.com/ua/catalog/doc-page?id_doc=61561 (in Ukrainian)
13. Hossein Aghajani, Ebrahim Hadavand, Naeimeh-Sadat Peighambardoust & Shahin Khameneh-asl (2020). Electro spark deposition of WC–TiC–Co–Ni cermet coatings on St52 steel. Surfaces and Interfaces, 18, 100392. https://doi.org/10.1016/j.surfin.2019.100392
14. Klymenko L.P., Soloviov S.M., Nord H.L. (2007). Systemy tekhnolohii [Technology systems]: Navchalnyi posibnyk. – Mykolaiv: Vyd-vo MDHU im. Petra Mohyly, 600 p. Elektronnyi resurs. URL: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://lib.chmnu.edu.ua/pdf/posibnuku/247/12.pdf (in Ukrainian)
15. Korotaev D.N. (2009). Technological Possibilities of Wear–Resistant Nanostructure Formation by Electric–Spark Alloying), SibADI.
16. Kuzmin V. I., Mikhal’chenko A. A., Kovalev O. B. & Kartaev E.V. (2012). The technique of formation of the axisymmetric heterogeneous flow for thermal spraying of powder materials / J. of Thermal Spray Technology. 21 (1), 159–168.
17. Kyryk V.H., Tarelnyk V.B. & Haponova O.P. (2018). Doslidzhennia vlastyvostei zharostiikykh funktsionalnykh pokryttiv, sformovanykh metodom elektroiskrovoho lehuvannia [Investigation of the properties of heat-resistant functional coatings formed by the method of electrospark alloying]. Kompresorne ta enerhetychne mashynobuduvannia. 2018, 4 (54), 17-22. (in Ukrainian)
18. Maistro, G., Kante, S., Nyborg, L. & Cao, Y. (2021). Low-temperature carburized high-alloyed austenitic stainless steels in PEMFC cathodic environment Surfaces and Interfaces, 24, 101093. https://doi.org/10.1016/j.surfin.2021.101093
19. Martsynkovskyi V.S. Opornyi pidshypnykovyi vuzol (varianty) [Support bearing assembly (options)]: pat. 74963 Ukrainy na vynakhid MPK (2006) F16S 32/00/ -opubl.15.02.2006, Biul. №2. (in Ukrainian)
20. Mashkov Y., Korotaev D. (2016). The effect of electric – spark treatment on the structure and properties of modified friction surfaces. Friction and wear, 37, 1, 83-88.
21. Nasosne ustatkuvannia v tekhnolohichnii skhemi AES [Pumping equipment in the technological scheme of nuclear power plants]. Elektronnyi resurs.URL: https://vseosvita.ua/library/embed/0100a91v-0886.docx.html (in Ukrainian)
22. Omelianovskoho P., Mysaka Y. & Akimov A. (2009). Teplova enerhetyka – novi vyklyky chasu [Thermal energy – new challenges of the time]. L: Ukrainski tekhnolohii. 658 p. (in Ukrainian)
23. Pliszka I. & Radek N. (2017). Corrosion Resistance of WC-Cu Coatings Produced by Electrospark Deposition. Procedia Engineering, 192, 707-712. https://doi.org/10.1016/j.proeng.2017.06.122
24. Radziievskyi V.M., Hartsunov Yu.F. & Tkachenko H.H. (1997). Plakuvannia stalevykh detalei iz zastosuvanniam vysokotemperaturnoho paiannia po shyrokomu zazoru z napovniuvachem [Plating of steel parts using high-temperature soldering along a wide gap with a filler]. Avtomatychne zvariuvannia. 3, 48-50. (in Ukrainian)
25. Shulzhenko M.H. (2011). Vyznachennia rozrakhunkovoho resursu ta otsinky zhyvuchosti rotoriv ta korpusnykh detalei turbiny [Determination of the calculated resource and assessment of the survivability of rotors and turbine body parts]: Metodychni vkazivky. Minenerhovuhillia Ukrainy. Ofits. vyd. 24 p. (in Ukrainian)
26. Tarelnyk N.V. (2021). Novyi sposib vidnovlennia znoshenykh poverkhon stalnykh detalei nasosnoho obladnannia atomnykh elektrostantsii [A new method of restoration of worn surfaces of steel parts of pumping equipment of nuclear power plants]. Naukovyi visnyk Ivano-Frankivskoho natsionalnoho tekhnichnoho universytetu nafty i hazu, 2(51), 32-39. (in Ukrainian)
27. Tarelnyk V., Gaponova O., Martsynkovskyy V., Kutakh A. & Golovchenko G. (2021). New Process for Nitriding Steel Parts. Proceedings of the 2021 IEEE 11th International Conference "Nanomaterials: Applications and Properties", NAP 2021.
28. Tarelnyk V.B. & Martsynkovskyi V.S. (2005). Modernizatsiia ta remont rotornykh mashyn [Modernization and repair of rotary machines]: Monohrafiia. Sumy: Vydavnytstvo „Kozatskyi val”. 364 p. (in Ukrainian)
29. Tarelnyk V.B., Gaponova O.P., Konoplianchenko Ye.V., Martsynkovskyy V.S., Tarelnyk N.V. & Vasylenko O.O. (2019). Improvement of quality of the surface electroerosive alloyed layers by the combined coatings and the surface plastic deformation. I. Features of formation of the combined electroerosive coatings on special steels and alloys. Metallofizika I Noveishie Tekhnologii, 41 (1), 47-69. https://doi.org/10.15407/mfint.41.01.0047
30. Tarelnyk V.B., Martsynkovskyi V.S., Bilous A.V., Zhukov O.M., Kosenko P.V. & Haponova O.P. Sposib sulfiduvannia poverkhni stalevykh i chavunnykh detalei metodom elektroeroziinoho lehuvannia [The method of sulphiding the surface of steel and cast iron parts by electroerosion alloying]: pat. 117528 Ukrainy na vynakhid, MPK B23H 1/04 (2006.01), S23S 8/60(2006.01) / ; zaiavl. 24.11.2016 ; opubl. 10.08.2018, Biul. № 15. 8 p. (in Ukrainian)
31. Tarelnyk V.B., Martsynkovskyi V.S., Haponova O.P., Konoplianchenko Ye.V., Sarzhanov O.A., Tarelnyk N.V., Mikulina M.O., Lazarenko A.D. & Polyvanyi A.D. Sposib nitrotsementatsii poverkhon stalevykh detalei metodom elektroiskrovoho lehuvannia (EIL). [The method of nitrocementing of the surfaces of steel parts by the method of electrospark alloying (ESA)] Pat. na korysnu model 150385 UA, MPK (2006) B23H 1/00, B23H 5/00, B23H 9/00, C23C 8/20 (2006.01), C23C 8/22(2006.01) /; zaiavl. 30.08.2021; opubl. 09.02.2022, Biul. № 6, 2022. (in Ukrainian)
32. Tarelnyk V.B., Paustovskii A.V., Tkachenko Y.G., Konoplianchenko E. V., Martsynkovskyi V.S. & Antoszewski B. (2017). Electrode Materials for Composite and Multilayer Electrospark-Deposited Coatings from Ni–Cr and WC–Co Alloys and Metals. Powder Metall Met Ceram, 55, 585–595. https://doi.org/10.1007/s11106-017-9843-2
33. Verkhovtsev V.H., Lysychenko H.V. & Zabulonov Yu.L. ( 2014) Perspektyvy rozvytku uranovoi syrovynnoi bazy yadernoi enerhetyky Ukrainy [Prospects for the development of the uranium ore base of the nuclear power industry in Ukraine]: monohrafiia. Derzh. ustanova «In-t heokhimii navkolysh. seredovyshcha NAN Ukrainy». Kyiv: Nauk. dumka. 356 p. (in Ukrainian)