СТРУКТУРУВАННЯ ПРОЦЕСУ АВТОМАТИЗАЦІЇ САДІННЯ ЖИВЦІВ ЕНЕРГЕТИЧНОЇ ВЕРБИ
Анотація
Енергія біомаси є однією із найперспективніших галузей відновлювальної енергетики передусім через можли- вість швидкого нарощування обсягів виробництва сировини. Створення нових насаджень енергетичних культур потребує відповідних технічних засобів. А для енергетичної верби чи тополі слід також ураховувати особливості садивного матеріалу, яким є здерев’янілі живці довжиною 20-25 см і діаметром 6-16 мм. Відомі машини для садіння живців енергетичних культур характеризуються малою продуктивністю внаслідок обмеження швидкості ручного закладання живців у садильний апарат. Тому створення механізмів для автоматизованого закладання живців у садильні апарати є актуальним науковим і виробничим завданням. Дослідження ґрунтується на аналізі відомих конструкцій автоматів садіння, що використовуються під час садіння розсади і саджанців для лісу. Під час роботи використовувалися методи структурно-факторного аналізу щодо будови механізмів; виділялись особливості робочих процесів, які відбуваються на кожному з етапів загального технологічного процесу переміщення живців від технологічної ємкості до місця садіння. Проаналізувавши відомі технічні рішення про садіння лісу, розсади, горшкових матеріалів і живців енергетичних культур, відмічено, що найбільш проблемною є позиція, що відповідає за подачу живців від ємкостей із розсадою до місця садіння. У сучасних машинах для садіння енергетичної верби цей процес виконується винятково вручну. Інформаційно-логічні пошуки призвели до синтезування структурно-логічної схеми технологічного процесу автоматизованого садіння. Згідно із цією схемою, основними операціями, які необхідно реалізувати в автоматі садіння, є звуження потоку живців, поштучний відбір, орієнтування і транспортування садивного матеріалу до місця садіння. Виокремлено перспективні способи автоматизації садіння живців енергетичних культур і можливі проблеми на шляху до їх реалізації.
Посилання
2. Asmolovskyi, M.K., Loi, V.N., Zhukov, A.V. (2004). Mekhanizaciya liesnogo i parkovogo hoziaystva (Mechanization of the forest, park and garden management). BSTU, Minsk. 450 р. (in Russian).
3. Baran, D., Kwaśniewski, D., Mudryk K. (2007). Wybrane właściwości fizyczne trzyletniej wierzby energetycznej. Inżynieria Rolnicza. V. 11. pp. 7-12.
4. Bartenev, I.M. (2012). Automatizaciya processa posadki rasteniy (Automation of the planting process). Scientific journal of the KubSAU 75(01), pp. 384-396 (in Russian).
5. Bartenev, I.M. (2017). Innovacionnye napravleniya tekhnicheskogo razvitiya lesnogo hozyajstva i zashchitnogo lesorazvedeniya (Innovative directions of technical development of forest management and protective forcession). Aktual'nye napravleniya nauchnyh issledovanij XXI veka: teoriya i praktika. T.5. pp. 307-309 (in Russian).
6. Borys, M.M., Yermakov, S.V. (2017). Perspektyvy avtomatyzatsii sadinnia zhyvtsiv enerhetychnykh kultur (Prospects for automation of planting cuttings of energy crops). Zbirnyk naukovykh prats Mizhnarodnoi naukovoi konferentsii. Kamianets-Podilskyi, 2017. pp. 23-26 (in Ukrainian).
7. Bush, C., Volk, T.A., Eisenbies H. (2015). Planting rates and delays during the establishment of willow biomass crops. Biomass and Bioenergy. V.83, 290-296 https://doi.org/10.1016/j.biombioe.2015.10.008
8. Dziedzic, K., Łapczyńska-Kordon, B., Mudryk, K. (2017). Decision support systems to establish plantations of energy crops on the example of willow (Salix Viminalis L.). Scientific achievements in agricultural engineering, agronomy and veterinary medicine polish ukrainian cooperation. Vol. 1, No. 1, pp. 150-160.
9. Evseev, L. (1977) Rassadoposadochnaya mashina. Tekhnika molodezhi, 09
10. Frączek, J., Mudryk, K. (2005). Jakości sadzonek wierzby energetycznej w aspekcie sadzenia mechanicznego. Inżynieria Rolnicza, 6 (66),159-167.
11. Galle, D.T. (2012). Development of an automated precision planter for establishment of Miscanthus giganteus. Purdue University. ProQuest Dissertations Publishing, 2012. 10156261.
12. Hutsol T., Glowacki S., Mudryk K. Agrobiomass of Ukraine – Energy Potential of Central and Eastern Europe (Engineering, Technology, Innovation, Economics). Monograph. Warsaw: 2021. 136 p.
13. Hutsol, T., Yermakov, S., Firman, Ju, Duganets, V., Bodnar, A. (2018). Analysis of technical solutions of planting machines, which can be used in planting energy willow Renewable Energy Sources: Engineering, Technology, Innovation. pp. 99-111. https://doi.org/10.1007/978-3-030-13888-2_10.
14. Ivanyshyn, V., Yermakov, S., Ishchenko, T., Mudryk, K., Hutsol, T. (2020). Calculation algorithm for the dynamic coefficient of vibroviscosity and other properties of energy willow cuttings movement in terms of their unloading from the tanker. E3S Web of Conferences, 154, 04005. https://doi.org/10.1051/e3sconf/202015404005.
15. Kasimov, N.G., Konstantinov, V.I., Kutiavin, A.S. (2015). Klassifikaciya rassadoposadochnyx mashy`n po osnovnym pry`znakam funkcy`ony`rovany`ya. [Classification of seedlings planters according to the main operating principles]. Vestnik of the Izhevsk State Agricultural Academy, 3 (44), pp. 20-25. (in Russian)
16. Kravchuk, V., Novokhatskyi, M., Kozhushko, M., Dumych, V., Zhurba, H. (2013). Na shliakhu do stvorennia plantatsii enerhetychnykh kultur (On the way to creating energy plantations). Tekhnika i tekhnolohii APK, № 2 (41) (in Ukrainian).
17. Kucher, O., Prokopchuk, L. (2019). Economic aspects of biomass market development in Ukraine. Renewable Energy Sources engineering, technology, innovation. Krynica. pp. 12-14. https://doi.org/10.1051/e3sconf/202015401007.
18. Kucher, O., Prokopchuk, L. (2017). The development of the market of the renewable energy in Ukraine. Renewable Energy Sources: Engineering, Technology, Innovation. Springer International Publishing AG. pp. 71-81. https://doi.org/10.1007/978-3-319-72371-6_8.
19. Kutz, L.J., Craven, J.B. (1994). Evaluation of photoelectric sensors for robotic transplantation. Applied Engineering in Agriculture, 10 (1), pp.115-121.
20. Liu, K., Cheng G. and Kong, Z. (2019). Beidou agricultural machinery automatic driving software design, 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp. 1770-1775, https://doi.org/10.1109/IAEAC47372.2019.8997712
21. Lys, S.S. (2009). Ohliad tekhnolohii hazyfikatsii derevyny (Review of wood gasification technology). Naukovyi visnyk NLTU Ukrainy: zb. nauk.-tekhn. prats. Lviv (in Ukrainian)
22. Manual seedling planter РРМ-1. Technical details and operations manual Retrieved: http://www.rosta.ua/pics/passport/rrm1.rar, Access: 20.10.2021.
23. Mao, H., Han, L., Hu, J., Kumi, F. (2014). Development of a pincette-type pick-up device for automatic transplanting of greenhouse seedlings. Applied engineering in agriculture, 30(4), pp. 547-556.
24. Mitkov, V., Kiurchev, S., Nurek, T., Chorna, T., Ihnatiev, Ye. (2021). Scientific bases of aggregation of combined units on the basis of an integrated tractor. Monograph. Warsaw.
25. Miwa, Y. (1991). Automation of plant tissue culture process. In Automation in biotechnology: a collection of contributions presented at the Fourth Toyota Conference, Aichi, Japan, Amsterdam: Elsevier.
26. Mudryk K, Hutsol T., Ovcharuk O. (2021). Określenie rozłożenia pędów wierzby energetycznej. Trends and challenges of modern agricultural science: theory and practice, Kyiv, рp. 20-22.
27. Roik, M.V., Sinchenko, V.M., Fuchylo, Y.D. (2015). Energety`chna verba: texnologiya vy`roshhuvannya ta vy`kory`stannya (Energy willow: cultivation technology and usage). LLC “Nilan-LTD”, Vinnitsa, р.340 (in Ukrainian).
28. SALIX energy. Retrieved: https://www.salix-energy.com. Access: 20.10.2021.
29. Seedling planters. Retrieved: http://www.agro-sistema.ru/index.php? option=com_content&view=article&id=89&Itemid=76 Access: 20.10.2021.
30. Sinchenko, V., Fuchylo, Ya., Humentyk, M. (2015). Koryhuvannia dlia verby (Adjustments for willow). The Ukrainian Farmer (in Ukrainian).
31. Usenko, M.V. (2010). Kompleks malogabarytnyh mashyn dlya vyroshchuvannya odnorichnyh kultur na peresichnyi miscevosti (The small-size machine complex for growing non-perennial crops in rough terrain). Monograph. RVV LNU, Lutsk, р. 240 (in Russian).
32. Willowpedia. Retrieved: https://www.youtube.com/user/Willowpedia. Access: 20.10.2021.
33. Wimatec Mattes GMBH. Retrieved: http://www.wimatec-mattes.de. Access: 20.10.2021.
34. Wrobel, M., Mudryk, K., Jewiarz, M., Knapczyk, A. (2018). Impact of raw material properties and agglomeration pressure on selected parmeters of granulates obtained from willow and black locust biomass. Engineering for Rural Development. Jelgava, 23-25 May 2018, pp. 1933-1938.
35. Yermakov, S. (2017) Kierunki optymizacji maszyn dla sadzenia wierzby energetycznej. Skróty referetów i posterów Konferencji Naukowej pt. Inżyneria produkcji rolniczej i leśnej. Warszawa, 8-9 czzerwca 2017, p. 75-77.
36. Yermakov, S.V. (2017). Prospects for improvement of constructions for planting energy crops cuttings. Podilskyi visnyk: silske gospodarstvo, tekhnika, ekonomika, v. 2, pp. 37-45.
37. Yermakov, S., Hutsol, T., Ovcharuk, O., Kolosiuk, I. (2019). Mathematic simulation of cutting unloading from the bunker. Independent journal of management & production v.10, n.7, Special Edition PDATU, 758-777. https://doi.org/10.14807/IJMP.V10I7.909.
38. Yermakov, S., Hutsol, T., Mudryk, K., Dziedzic, K., Mykhailova, L. (2019). The analysis of stochastic processes in unloading the energy willow cuttings from the hopper. Environment, Technology, Resources. Rezekne; Latvia; 249-252. https://doi.org/10.17770/etr2019vol3.4159.
39. Yermakov, S.V., Hutsol, T.D. (2018). Features of the heterogeneous rood-like materials outflow (by example of energy willow cutting). Technological and methodological aspects of agri-food engineering in young scientist research, p. 55-68.
40. Yermakov, S., Hutsol, T., Slobodian, S., Komarnitskyi, S., Tysh, M. (2018). Possibility of using automation tools for planting of the energy willow cuttings. Renewable Energy Sources: Engineering, Technology, Innovation. pp. 419-429. https://doi.org/10.1007/978-3-030-13888-2_42
41. Yermakov, S, Tulej, M., Tulej, W., Shevchuk, I. (2018). Analiz konstruktsiy avtomativ sadinnia (Construction analysis means of plantingі automation). Tendentsii ta perspektyvy rozvytku nauky i osvity v umovakh hlobalizatsii. Vypusk 34, Pereiaslav-Khmelnytskyi, pp.615-619 (in Ukrainian).
42. Yermakov, S. (2019). Application of the laplace transform to calculate the velocity of a two-phase fluid modulated by the movement of cuttings of an energy willow (Salix Viminalis). Теka. Quarterly journal of agri-food industry, v. 2, p. 71-78.
43. Yermakov, S., Boris, N. (2016). Sopostavlenie reshenij lesoposadochnyh mashin s trebovaniyami dlya energeticheskih drevesnyh kul'tur (iva, topol') (Comparison of planting machine solutions with requirements for energy tree crops (willow, poplar)). Sovremennyj nauchnyj vestnik. № 20-1 (267). Belgorod: Rusnauchkniga. pp. 67-68 (in Russian).
44. Yermakov, S.V., Borys, M.M. (2015). Analiz efektyvnosti ahrehativ dlia sadinnia enerhetychnoi verby (Efficiency analysis of the energy willow planting devices). Veda a vznik - 2015. Dil 14 Ekologie Zemepis a geologie Vystavba a architektura Zemedelstvi,Praha, pp. 47-49 (in Ukrainian).
45. Yermakov, S., Hutsol, T. Mudryk, K. (2018). Vykorystannia verby v enerhetychnykh i hospodarskykh tsiliakh (Using willow for energy and economic purposes). Tendentsii ta perspektyvy rozvytku nauky i osvity v umovakh hlobalizatsii, Pereiaslav-Khmelnytskyi, s.732-735 (in Ukrainian).
46. Yermakov, S., Hutsol, T., Mudryk, K. (2019). Peredumovy vyroshchuvannia enerhetychnoi verby v Ukraini (Prerequisites for growing energy willow in Ukraine). Enerhoefektyvnist: nauka, tekhnolohii, zastosuvannia. Kyiv, s.16-18 (in Ukrainian).
47. Yermakov S.V., Hutsol T.D. (2021). Investigation of the process of gravitational unloading of energy willow cuttings in the conditions of static and dynamic arches. Engineering of nature management, vip.3, s. 97-109.
48. Zyma, I.M., Maliutin, T.T. (2006). Mekhanizatsiia lisohospodarskykh robit (Mechanization of forestry works). Kyiv: INKOS, 488 p. (in Ukrainian).