MICROBIAL INSEMINATION OF WHEAT GRAINS WHICH HAS BEEN GROWN AT ZHYTOMYR POLISYA
Abstract
Animal breeding active development requires the provision of this manufacture with a food base. And both the nutritional value, quality and safety of food components have been accounted for. Determining the nutritional feed value is a standard and not a hard task. However, foods with perfect organoleptic proprieties can carry a hidden danger ‑ mycotoxins. These substances are produced by microscopic fungi in stressful situations to ensure their own species survival. We have assessed the surface contamination of wheat grains grown in Zhytomyr Polissya in 2020 by potential mycotoxins producers. The composition of microbial associations was studied in incubation on Chapek Agar at temperatures of 32˚C, 23˚C, and 15˚C (according to temperature fluctuations at the wheat harvest period in this region). Representatives of the fungi morphological group (mycelial, yeast) and single colonies of different Bacillus types were developed on Chapek Agar in any cultivation conditions. Around grains incubated at 23˚C and 32˚C were registered a small number of individual colonies (from 20.6% to 33.9%) and many more fused and multilayered ones. In microbial associations grown at different temperatures, mycelial fungi developed better than yeast. 81.4% of the total colonies number grown at 23˚C belonged to mycelial fungi of different spaces. This mark at 32˚C was 72.3%. The 32˚C temperature stimulated the development of mucoral fungi and toxin producents (Aspergillus spp) association. In such conditions, mucoral fungi formed films in the form of lawns in 5 days, and Aspergillus spp. formed a huge number of conidia. In the temperature range of 23˚С-15˚С, representatives of known toxin producers species such as Aspergillus, Penicillium, and Alternaria have been developed. These microorganisms formed mature colonies not in 5 but in 7-8 days. So, in summer conditions with the temperature (30±2)˚С, wheat grain, as a component of animal rations, should be unloaded from warehouses with low temperatures every 2-3 days. In case the temperature is (24±2)˚С this procedure can be carried out in 5 days.
References
2. Chelkowski, J., Wisniewska, H., Adamski, T., Golinski, P., Kaczmarek, Z., Kostecki, M., Perkowski, J., & Surma, M. (2000). Effects of Fusarium culmorum head blight on mycotoxin accumulation and yield traits in barley doubled haploids. J. Phytopathol. 148, 541–545.
3. Cranfield, J. A. L. (2020). Framing consumer food demand responses in a viral pandemic. Canadian Journal of Agricultural Economics/Revue Canadienne D’agroeconomie, 68(2), 151–156. doi: https://doi.org/10.1111/cjag.12246
4. Cromey, M.G., Shorter, S.C., Lauren, D.R., & Sinclair, K.I. (2002). Cultivar and crop management influences on fusarium head blight and mycotoxins in spring wheat (Triticum aestivum) in New Zealand. N. Z. J. Crop Hortic. Sci. 30, 235–247.
5. Darnhofer, I. (2020). Farm resilience in the face of the unexpected: Lessons from the COVID-19 pandemic. Agriculture and Human Values, 1, 3. doi: 10.1007/s10460-020-10053-5
6. Diachenko, L. S., Syvyk, Т. L., & Tytariova, О. М. (2020). Godivlia svynei. [Pig’s fidding]. Bila Tserkva, BNAU. (in Ukrainian).
7. de Sousa, S. M., de Oliveira, C. A., Andrade, D. L., de Carvalho, C. G., Ribeiro, V. P., Pastina, M. M., ... & Gomes, E. A. (2021). Tropical Bacillus strains inoculation enhances maize root surface area, dry weight, nutrient uptake and grain yield. J Plant Growth Regul., 40, 867-877. doi: https://doi.org/10.1007/s00344-020-10146-9
8. Himich, О. V., Zdor, L. P., Lapteeev, О. О., & Semenova, О. І. (2018). Efektyvnistʹ norm vvedennya zerna trytykale u ratsionakh molodnyaku svyney. [The effectiveness of triticale grain intake in the diets of young pigs]. Kormy i kormovyrobnytstvo, (85), 125-131. (in Ukrainian).
9. Hooker, D.C., Schaafsma, A.W., & Tamburic-Ilincic, L. (2002). Using weather variables pre- and post-heading to predict deoxynivalenol content in winter wheat. Plant Dis. 86, 611–619.
10. Hu, F., Tu, X. F., Thakur, K., Hu, F., Li, X. L., Zhang, Y. S., ... & Wei, Z. J. (2019). Comparison of antifungal activity of essential oils from different plants against three fungi. Food and Chemical Toxicol., 134, 110821. doi: https://doi.org/10.1016/j.fct.2019.110821
11. Jámbor, A., Czine, P., & Balogh, P. (2020). The impact of the coronavirus on agriculture: First evidence based on global newspapers. Sustainability, 12(11), 4535. doi: https://doi.org/10.3390/su12114535
12. Krasauskas, A. (2018). Fungi isolated from maize (Zea mays L.) grain in Lithuania. Žemės ūkio mokslai, 25(4), 169-176. doi: https://doi.org/10.6001/zemesukiomokslai.v25i4.3866
13. Kyrpa, М. Ya. (2013). Naukove obhruntuvannya innovatsiynykh promyslovykh tekhnolohiy zberihannya zerna. [Scientific substantiation of innovative industrial technologies of grain storage]. Bull. Inst. Agiculture of steppe zone NААN Ukraine, (5), 93-98. (in Ukrainian).
14. Mannapova, R. Т. (2018). Mikrobiologiya i mikilogiya. Osobo opasnyye infektsionnyye bolezni, mikozy i mikotoksikozy. [Mikrobiology and Mikology. Particularly dangerous infectious diseases, mycoses and mycotoxicoses]. Textbook. Moscow, Prospekt. (in Russian).
15. Mathur, S., Sharma, M. P., & Jajoo, A. (2018). Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. J Photochem. & Photobiol. B: Biology, 180, 149-154. doi: https://doi.org/10.1016/j.jphotobiol.2018.02.002
16. Mucha, J., Peay, K. G., Smith, D. P., Reich, P. B., Stefański, A., & Hobbie, S. E. (2018). Effect of simulated climate warming on the ectomycorrhizal fungal community of boreal and temperate host species growing near their shared ecotonal range limits. Microbial ecology, 75(2), 348-363. doi: https://doi.org/10.1007/s00248-017-1044-5
17. Mykhalko, O. H. (2021). Suchasnyy stan ta shlyakhy rozvytku svynarstva v sviti ta Ukrayini. [Current state and ways of pig breeding development in the world and in Ukraine]. Bul. Sumy National Agr. Univ. Series: Livestock, (3 (46)), 61-77. doi: https://doi.org/10.32845/bsnau.lvst.2021.3.9 (in Ukrainian).
18. Nagorna, L., Poscurina, І., & Nesteruk, V. (2020). Monitorynh mikolohichnoho zabrudnennya kormiv v Sumsʹkiy oblasti. [Monitoring of mycological contamination of feed in Sumy region]. In III All-Ukrainian scientific and practice Internet conference «Modern problems of biosafety in Ukraine» (pp. 44-46). Poltava, Ukraine. (in Ukrainian).
19. Oliveira, P. M., Zannini, E., & Arendt, E. K. (2014). Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: From crop farming to cereal products. Food Microbiol., 37, 78–95. doi: https://doi.org/10.1016/j.fm.2013.06.003
20. Omotayo, O. P., Omotayo, A. O., Mwanza, M., & Babalola, O. O. (2019). Prevalence of mycotoxins and their consequences on human health. Toxicological research, 35(1), 1-7. doi: https://doi.org/10.5487/TR.2019.35.1.001
21. Pro zatverdzhennya Metodiv vidboru zrazkiv dlya vyznachennya maksymalʹno dopustymykh rivniv mikotoksyniv u kharchovykh produktakh dlya tsiley derzhavnoho kontrolyu [About the statement of Methods of sampling for definition of the maximum admissible levels of mycotoxins in foodstuff for the purposes of the state control]. Order of the Ministry of Agrarian Policy and Food of Ukrain No. 264. (May 22, 2019). Kyiv, Verkhovna Rada of Ukraine. Accepted: https://zakon.rada.gov.ua/laws/show/z0608-19#Text (in Ukrainian).
22. Santos Pereira, C., C Cunha, S., & Fernandes, J. O. (2019). Prevalent mycotoxins in animal feed: Occurrence and analytical methods. Toxins, 11(5), 290. https://doi.org/10.3390/toxins11050290
23. Snow, V., Rodriguez, D., Dynes, R., Kaye-Blake, W., Mallawaarachchi, T., Zydenbos, S., ... & Stevens, D. (2021). Resilience achieved via multiple compensating subsystems: The immediate impacts of COVID-19 control measures on the agri-food systems of Australia and New Zealand. Agricultural Systems, 187, 103025. https://doi.org/10.1016/j.agsy.2020.103025
24. State statistics service of Ukraine. (2021). Kilʹkistʹ svynei. Statystychna informatsiya. [Number of pigs. Statistical information]. [Інтернет-ресурс]. Accessed at: http://www.ukrstat.gov.ua/ (14.01.2022). (in Ukrainian).
25. Štreimikienė, D., Baležentis, T., Volkov, A., Ribašauskienė, E., Morkūnas, M., & Žičkienė, A. (2021). Negative effects of covid-19 pandemic on agriculture: systematic literature review in the frameworks of vulnerability, resilience and risks involved. Economic Research-Ekonomska Istraživanja, 1-17. https://doi.org/10.1080/1331677X.2021.1919542
26. Sytnikova, N. О., Fomina, К. F., Dudnyk, L. А., Chornozubenko, N. N., & Kuz’menko, L. І. (2008). Tekhnolohiya zberihannya i pererobky silʹsʹkohospodarsʹkoyi produktsiyi. [Technology of storage and processing of agricultural products]. Kyiv, Agroosvita. (in Ukrainian).
27. Yalpachik, V., Zagorko, N., Skliar, А., Kiurchev. S., Budenko, S., Verkholantseva. V., … & Tsyb, V. (2018). Obladnannya skladiv. Zberihannya zerna i zernoproduktiv: navchalʹnyy posibnyk. [Equipment of warehouses. Storage of grain and grain products: a textbook]. Melitopol’, Melitopol’ city printing house. URL: http://elar.tsatu.edu.ua/handle/123456789/5092 (in Ukrainian).