RESULTS OF REPRODUCTION WHEN USING ACIDULATORS FOR MYCOTOXICOSIS

Keywords: cows, breeders, reproduction indicators, zearalenone, stimulation schemes, reproduction

Abstract

Reproduction of cows is one of the most important indicators of the functioning of a livestock enterprise. When feeding feed containing a large amount of mycotoxins, in particular zearalenone and deoxynivalenol, the ability of cows to reproduce decreases due to the processes of degeneration, apoptosis and organization in the organs of the reproductive system and necrotic processes in the liver and kidneys. The aim of the research was to establish the effect of acidifiers based on organic acids on the correction of reproduction indicators in cows and to compare them with those in sick animals. Data were obtained on the imbalance of calcium indicators, in particular, its decrease to 1.75±0.64 mmol/l, phosphorus to 1.03±0.27 mmol/l, and magnesium increase to 1.12±0.19 mmol/l. Toxic conditions were established based on an increase in the level of AST to 154.26±5.57 and ALT to 58.88. An increase in estradiol up to 12.85±0.62 ng/ml was established after feeding feeds containing zearalenone. At the same time, after the use of acidifiers based on organic acids, estradiol decreased to 6.73±0.53 ng/ml and approached the reference values – 5.49±0.29 ng/ml. The dynamics of progesterone and luteinizing hormones, which tended to increase, were studied, while the level of these hormones remained low in sick animals. The use of acidifiers contributed to the restoration of reproductive capacity in cows and ensured the fertility of cows after the 1st calving up to 80.39%, 81.82% – cows 3-5 years old and 69.39% – cows older than 5 years. A reduction in the length of the postpartum period to 34.8±1.33 days, the length of the service period to 57.37±2.84 days, and the insemination index to 2.8 was established in cows treated with an acidifier. The positive effect of using an acidifier before using synchronization schemes was studied. 56.67% of pregnant cows were obtained after the 1st calving, 46.88% – 3-5 calvings, 41.38% – cows of the older age group when using the 7-day stimulation scheme. Similarly, 56.0% – cows of the 1st calving, 40.74% – cows of 3-5 calving and 40.0% – cows of the older age group when using synchronization according to the presynch scheme. The use of acidifiers contributed to the increase of reproductive performance in cows.

References

1. Balló, A., Busznyákné Székvári, K., Czétány, P., Márk, L., Török, A., Szántó, Á., & Máté, G. (2023). Estrogenic and Non-Estrogenic Disruptor Effect of Zearalenone on Male Reproduction: A Review. International journal of molecular sciences, 24(2), 1578. https://doi.org/10.3390/ijms24021578
2. Barański, W., Gajęcka, M., Zielonka, Ł., Mróz, M., Onyszek, E., Przybyłowicz, K. E., Nowicki, A., Babuchowski, A., & Gajęcki, M. T. (2021). Occurrence of Zearalenone and Its Metabolites in the Blood of High-Yielding Dairy Cows at Selected Collection Sites in Various Disease States. Toxins, 13(7), 446. https://doi.org/10.3390/toxins13070446
3. Barbato, O., Menchetti, L., Brecchia, G., & Barile, V. L. (2022). Using Pregnancy-Associated Glycoproteins (PAGs) to Improve Reproductive Management: From Dairy Cows to Other Dairy Livestock. Animals : an open access journal from MDPI, 12(16), 2033. https://doi.org/10.3390/ani12162033
4. Becker-Algeri, T. A., Castagnaro, D., de Bortoli, K., de Souza, C., Drunkler, D. A., & Badiale-Furlong, E. (2016). Mycotoxins in Bovine Milk and Dairy Products: A Review. Journal of food science, 81(3), R544–R552. https://doi.org/10.1111/1750-3841.13204
5. Changwa, R., De Boevre, M., De Saeger, S., & Njobeh, P. B. (2021). Feed-Based Multi-Mycotoxin Occurrence in Smallholder Dairy Farming Systems of South Africa: The Case of Limpopo and Free State. Toxins, 13(2), 166. https://doi.org/10.3390/toxins13020166
6. Chen, X., Su, X., Li, J., Yang, Y., Wang, P., Yan, F., Yao, J., & Wu, S. (2021). Real-time monitoring of ruminal microbiota reveals their roles in dairy goats during subacute ruminal acidosis. NPJ biofilms and microbiomes, 7(1), 45. https://doi. org/10.1038/s41522-021-00215-6
7. Debevere, S., Cools, A., Baere, S., Haesaert, G., Rychlik, M., Croubels, S., & Fievez, V. (2020). In Vitro Rumen Simulations Show a Reduced Disappearance of Deoxynivalenol, Nivalenol and Enniatin B at Conditions of Rumen Acidosis and Lower Microbial Activity. Toxins, 12(2), 101. https://doi.org/10.3390/toxins12020101
8. Deka, R. P., Magnusson, U., Grace, D., Randolph, T. F., Shome, R., & Lindahl, J. F. (2021). Estimates of the Economic Cost Caused by Five Major Reproductive Problems in Dairy Animals in Assam and Bihar, India. Animals : an open access journal from MDPI, 11(11), 3116. https://doi.org/10.3390/ani11113116
9. Du, H. S., Wang, C., Wu, Z. Z., Zhang, G. W., Liu, Q., Guo, G., Huo, W. J., Zhang, Y. L., Pei, C. X., & Zhang, S. L. (2019). Effects of rumen-protected folic acid and rumen-protected sodium selenite supplementation on lactation performance, nutrient digestion, ruminal fermentation and blood metabolites in dairy cows. Journal of the science of food and agriculture, 99(13), 5826–5833. https://doi.org/10.1002/jsfa.9853
10. Gomaa, N., Elemiri, M., Hegazy, Y., Zeineldin, M., Nassif, M., Alcala-Canto, Y., Barbabosa-Pliego, A., Rivas-Caceres, R. R., & Abdelmegeid, M. (2022). Clinical and pathological examination of mycotoxicosis as an associated risk factor for colic in equine. Microbial pathogenesis, 163, 105377. https://doi.org/10.1016/j.micpath.2021.105377
11. González-Alvarez, M. E., McGuire, B. C., & Keating, A. F. (2021). Obesity alters the ovarian proteomic response to zearalenone exposure†. Biology of reproduction, 105(1), 278–289. https://doi.org/10.1093/biolre/ioab069
12. Han, X., Huangfu, B., Xu, T., Xu, W., Asakiya, C., Huang, K., & He, X. (2022). Research Progress of Safety of Zearalenone: A Review. Toxins, 14(6), 386. https://doi.org/10.3390/toxins14060386
13. Humer, E., Lucke, A., Harder, H., Metzler-Zebeli, B. U., Böhm, J., & Zebeli, Q. (2016). Effects of Citric and Lactic Acid on the Reduction of Deoxynivalenol and Its Derivatives in Feeds. Toxins, 8(10), 285. https://doi.org/10.3390/toxins8100285
14. Kemboi, D. C., Antonissen, G., Ochieng, P. E., Croubels, S., Okoth, S., Kangethe, E. K., Faas, J., Lindahl, J. F., & Gathumbi, J. K. (2020). A Review of the Impact of Mycotoxins on Dairy Cattle Health: Challenges for Food Safety and Dairy Production in Sub-Saharan Africa. Toxins, 12(4), 222. https://doi.org/10.3390/toxins12040222
15. Kemboi, D. C., Antonissen, G., Ochieng, P. E., Croubels, S., Okoth, S., Kangethe, E. K., Faas, J., Lindahl, J. F., & Gathumbi, J. K. (2020). A Review of the Impact of Mycotoxins on Dairy Cattle Health: Challenges for Food Safety and Dairy Production in Sub-Saharan Africa. Toxins, 12(4), 222. https://doi.org/10.3390/toxins12040222
16. Kim, D. H., Lee, I. H., Do, W. H., Nam, W. S., Li, H., Jang, H. S., & Lee, C. (2013). Incidence and levels of deoxynivalenol, fumonisins and zearalenone contaminants in animal feeds used in Korea in 2012. Toxins, 6(1), 20–32. https://doi.org/10.3390/toxins6010020
17. Kinkade, C. W., Rivera-Núñez, Z., Gorcyzca, L., Aleksunes, L. M., & Barrett, E. S. (2021). Impact of Fusarium-Derived Mycoestrogens on Female Reproduction: A Systematic Review. Toxins, 13(6), 373. https://doi.org/10.3390/toxins13060373
18. Knutsen, H. K., Alexander, J., Barregård, L., Bignami, M., Brüschweiler, B., Ceccatelli, S., Cottrill, B., Dinovi, M., Edler, L., Grasl-Kraupp, B., Hogstrand, C., Hoogenboom, L. R., Nebbia, C. S., Petersen, A., Rose, M., Roudot, A. C., Schwerdtle, T., Vleminckx, C., Vollmer, G., … Oswald, I. P. (2017). Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA journal. European Food Safety Authority, 15(7), e04851. https://doi.org/10.2903/j.efsa.2017.4851
19. Li, Y., He, X., Yang, X., Huang, K., Luo, Y., Zhu, L., Li, Y., & Xu, W. (2015). Zinc inhibits the reproductive toxicity of Zearalenone in immortalized murine ovarian granular KK-1 cells. Scientific reports, 5, 14277. https://doi.org/10.1038/srep14277
20. Liu, Y. R., Du, H. S., Wu, Z. Z., Wang, C., Liu, Q., Guo, G., Huo, W. J., Zhang, Y. L., Pei, C. X., & Zhang, S. L. (2020). Branched-chain volatile fatty acids and folic acid accelerated the growth of Holstein dairy calves by stimulating nutrient digestion and rumen metabolism. Animal : an international journal of animal bioscience, 14(6), 1176–1183. https://doi.org/10.1017/S1751731119002969
21. Maragos C. M. (2020). Development and characterisation of a monoclonal antibody to detect the mycotoxin roquefortine C. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment, 37(10), 1777–1790. https://doi.org/10.1080/19440049.2020.1781937
22. Mehdi, Y., & Dufrasne, I. (2016). Selenium in Cattle: A Review. Molecules (Basel, Switzerland), 21(4), 545. https://doi.org/10.3390/molecules21040545
23. Mróz, M., Gajęcka, M., Przybyłowicz, K. E., Sawicki, T., Lisieska-Żołnierczyk, S., Zielonka, Ł., & Gajęcki, M. T. (2022). The Effect of Low Doses of Zearalenone (ZEN) on the Bone Marrow Microenvironment and Haematological Parameters of Blood Plasma in Pre-Pubertal Gilts. Toxins, 14(2), 105. https://doi.org/10.3390/toxins14020105
24. Nowicki, A., Barański, W., Baryczka, A., & Janowski, T. (2017). OvSynch Protocol and its Modifications in the Reproduction Management of Dairy Cattle Herds – an Update. Journal of veterinary research, 61(3), 329–336. https://doi.org/10.1515/jvetres-2017-0043
25. Penagos-Tabares, F., Khiaosa-Ard, R., Schmidt, M., Bartl, E. M., Kehrer, J., Nagl, V., Faas, J., Sulyok, M., Krska, R., & Zebeli, Q. (2022). Cocktails of Mycotoxins, Phytoestrogens, and Other Secondary Metabolites in Diets of Dairy Cows in Austria: Inferences from Diet Composition and Geo-Climatic Factors. Toxins, 14(7), 493. https://doi.org/10.3390/toxins14070493
26. Penagos-Tabares, F., Khiaosa-Ard, R., Schmidt, M., Bartl, E. M., Kehrer, J., Nagl, V., Faas, J., Sulyok, M., Krska, R., & Zebeli, Q. (2022). Cocktails of Mycotoxins, Phytoestrogens, and Other Secondary Metabolites in Diets of Dairy Cows in Austria: Inferences from Diet Composition and Geo-Climatic Factors. Toxins, 14(7), 493. https://doi.org/10.3390/toxins14070493
27. Rieger, A., Meylan, M., Hauser, C., & Knubben-Schweizer, G. (2021). Eine Meta-Analyse zur Schätzung der wirtschaftlichen Einbussen durch Milch- und Reproduktionsverluste infolge boviner Paratuberkulose in der Schweiz [Metaanalysis to estimate the economic losses caused by reduced milk yield and reproductive performance associated with bovine paratuberculosis in Switzerland]. Schweizer Archiv fur Tierheilkunde, 164(11), 737–751. https://doi.org/10.17236/sat00324
28. Ropejko K, Twarużek M. Zearalenone and Its Metabolites-General Overview, Occurrence, and Toxicity. Toxins (Basel). 2021 Jan 6;13(1):35. https://doi.org/10.3390/toxins13010035 PMID: 33418872; PMCID: PMC7825134.
29. Shtina, I. E., Valina, S. L., Yambulatov, A. M., & Ustinovа, O. Y. (2019). Voprosy pitaniia, 88(1), 62–70. https://doi.org/10.24411/0042-8833-2019-10007
30. Thapa, A., Horgan, K. A., White, B., & Walls, D. (2021). Deoxynivalenol and Zearalenone-Synergistic or Antagonistic Agri-Food Chain Co-Contaminants?. Toxins, 13(8), 561. https://doi.org/10.3390/toxins13080561
31. Upadhaya, S. D., Sung, H. G., Lee, C. H., Lee, S. Y., Kim, S. W., Cho, K. J., & Ha, J. K. (2009). Comparative study on the aflatoxin B1 degradation ability of rumen fluid from Holstein steers and Korean native goats. Journal of veterinary science, 10(1), 29–34. https://doi.org/10.4142/jvs.2009.10.1.29
32. Visser, E. A., Moons, S. J., Timmermans, S. B. P. E., de Jong, H., Boltje, T. J., & Büll, C. (2021). Sialic acid O-acetylation: From biosynthesis to roles in health and disease. The Journal of biological chemistry, 297(2), 100906. https://doi.org/10.1016/j.jbc.2021.100906
Published
2023-06-06
How to Cite
Chekan, O. M. (2023). RESULTS OF REPRODUCTION WHEN USING ACIDULATORS FOR MYCOTOXICOSIS. Bulletin of Sumy National Agrarian University. The Series: Veterinary Medicine, (1(60), 101-107. https://doi.org/10.32782/bsnau.vet.2023.1.16