CONTROL OF WEEDS IN MAIZE GROWING

Keywords: green manure, corn, non-moldboard cultivation, weed seeds, weeds, soil, sowing, productivity

Abstract

In this article was evaluated the measurement of influence of stubble green fertilizer of oilseed radish and different methods of soil cultivation on changes in the potential weediness of typical chernozem and the actual weediness of corn. It was found that the use of green fertilizer of oilseed radish provided a significant reduction in the infestation of the 0–30 cm soil layer with weed seeds by 2.9–7.1 million pieces/ha, and reduced the number of all biological groups of weeds in corn crops by 0.2–4.5 pieces/m2 and their weight – by 4–69 g/m2. This increased the yield of corn grain by 1.5–1.8 t/ha. It was found that replacing plowing with non-moldboard tillage for plowing in green fertilizer for oilseed radish reduced the reserves of weed seeds in the soil layer of 0–30 cm by 0.7–1.7 million pieces/ha. At the same time, a significant increase in the number of weed seeds in the soil layer of 0–5 and 5–10 cm was established – by 3.3–5.6 and 14.3–16.1 million pieces/ha and a significant decrease in them in layers of 10–20 and 20–30 cm – by 10.4–13.2 and 8.1–8.4 million pieces/ha. The deepest non-moldboard cultivation provided the smallest potential clogging of the soil layer 0–5 cm – 24.4 and 22.3 million pieces/ha, which compared to non-moldboard cultivation with a depth of 13–15 and 6–8 cm is less by 0.6–1, 1 and 2.3–3.3 million pieces/ha. Substitution of plowing with non-moldboard cultivation increased the number and mass of weeds in corn crops mainly due to the group of early and late spring weeds. An insignificant change in these groups of weeds before plowing in terms of number (0.1–0.9 pieces/m2) and weight (2–24 g/m2) was observed during non-moldboard cultivation to a depth of 25–27 cm. In terms of actual weediness, the closest to the plowing option was the 25–27 cm deep non-moldboard cultivation. The difference between them was insignificant on the sidereal background in terms of the total number of weeds – 0.6–10.9 pieces/m2. Reducing the depth of non-moldboard cultivation contributed to a significant increase in the number of weeds in corn crops – by 5.0–9.1 pieces/m2 and their weight – by 98–207 g/m2, which led to a significant decrease in yield in the range of 0.5–0.8 t/ha. The highest yield of corn was obtained with the application of post-harvest green manure of oil radish on siderate and plowing (7.7 t/ha) and non-moldboard cultivation to a depth of 25–27 cm (7.9 t/ha). More effective control of potential and actual weeds through the use of stubble green fertilizer for oilseed radish and nonmoldboard cultivation with a depth of 25–27 cm contributed to obtaining the highest corn grain yield – 7.9 t/ha.

References

1. Armengot, L., Blanco-Moreno, J. M., Bàrberi, P., Bocci, G., Carlesi, S., Aendekerk, R. & Sans, F. X. (2016). Tillage as a driver of change in weed communities: a functional perspective. Agriculture, Ecosystems & Environment., 222, 276–285. doi:10.1016/j.agee.2016.02.021.
2. Casal, J.J. & Qüesta, J.I. (2018). Light and temperature cues: multitasking receptors and transcriptional integrators. New Phytologist., 217, 1029-1034.
3. Chauhan, B.S. & Mahajan, G. eds. (2014). Recent advances in weed management. Springer science±business media New York. doi: 10.1007/978-1-4939-1019-9.
4. Cordeau, S., Smith, R., Gallandt, E., Brown, B., Salon, P., DiTommaso, A., & Ryan, M. (2017). Timing of tillage as a driver of weed communities. Weed Science., 65(4), 504–514. doi:10.1017/wsc.2017.26.
5. Dvořák, P., Tomášek, J., Hamouz, K., & Kuchtová, P. (2016). Reply of mulch systems on weeds and yield components in potatoes. Plant, Soil and Environment., 61(7), 322–327. doi:10.17221/242/2015-pse.
6. Farhood, Y., Saeed, Z. S., Ghassem, A., Farideh, S. & Vahid, B. (2015). Effects of cover crops and weed management on corn yield / Journal of the Saudi Society of Agricultural Sciences., 14(2), 178–181. doi: 10.1016/j.jssas.2014.02.001.
7. Fernández-Milmanda, G.L. & Ballaré, C.L. (2021). Shade avoidance: expanding the color and hormone palette. Trends in Plant Science., 265, 509–523.
8. Hudz, V.P., Shuvar, I.A., Yunyk, A.V., Rykhlivskyi, I.P. & Mishchenko, Yu.H. (2014). Adaptyvni systemy zemlerobstva : pidruchnyk / Za red. Hudzia V.P. Kyiv: Tsentr uchbovoi literatury., 336. (in Ukrainian).
9. Haramoto, E. R., & Gallandt, E. R. (2004). Brassica cover cropping for weed management: A review. Renewable agriculture and food systems., 19, 187–198. doi:10.1079/rafs200490.
10. Horvath, D., Bruggeman, S., Moriles-Miller, J., Anderson, J., Dogramaci, M., Scheffler, B. & Clay, S. (2018). Weed presence altered biotic stress and light signaling in maize even when weeds were removed early in the critical weed-free period. Plant Direct., 2(4), e00057. doi: 10.1002/pld3.57.
11. Horvath, D., Clay, S., Bruggeman, S., Anderson, J., Chao, W. & Yeater, K. (2019). Varying weed densities alter the corn transcriptome highlighting a core set of weed-induced genes and processes with potential for manipulating weed tolerance. The Plant Genome., 12(3), 1-9. doi: 10.3835/plantgenome2019.05.0035.
12. Horvath, D., Clay, S., Swanton, C., Anderson, J. & Chao, W. (2022). Weed-induced crop yield loss: a new paradigm and new challenges. Trends in Plant Science., 28, 567–582. doi: 10.1016/j.tplants. 2022.12.014.
13. Horvath, D., Doherty, C., Desai, J., Clark, N., Anderson, J. & Chao, W. (2023). Weed-induced changes in the maize root transcriptome reveal transcription factors and physiological processes impacted early in crop-weed interactions. AoB Plants., 15(3), plad013. doi: 10.1093/aobpla/plad013.
14. Huber, M., Nieuwendijk, N., Pantazopoulou, C., Pierik, R. (2021). Light signalling shapes plant–plant interactions in dense canopies. Plant Cell Environment., 44, 1014–1029.
15. Hutianskyi, R., Popov, S., Zuza, V., & Kuzmenko, N. (2022). Weediness of corn for grain crops by cultivation in the stationary crop rotation and permanent crops in the Eastern Forest Steppe of Ukraine. Quarantine and Plant Protection., 3, 15-19. doi.org/10.36495/2312-0614.2022.3.15-19
16. Jabran, K. & Farooq, M. (2013). Implications of potential allelopathic crops in agricultural systems. Allelopathy., 349–385. Berlin: Springer. doi:10.1007/978-3-642-30595-5_15.
17. Jabran, K., Cheema, Z. A., Khan, M. B. & Hussain, M. (2016). Control of cabbage aphid brevicoryne brassicae (Homoptera: Aphididae) through allelopathic water extracts. Pakistan journal of scientific and industrial research. Series B: Biological Sciences., 59, 48–51.
18. Jabran, K., Mahajan, G., Sardana, V. & Chauhan, B. S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection., 72, 57–65. doi:10.1016/j.cropro.2015.03.004.
19. Karpenko O. Yu., Rozhko V. M., Butenko A. O., Masyk I. M., Malynka L. V., Didur I. M., Vereshchahin I. V., Chyrva A. S. & Berdin S. I. (2019). Post-harvest siderates impact on the weed littering of Maize. Ukrainian Journal of Ecology., 9 (3). 300-303.
20. Kong, C., Zhang, S., Li, Y., Xia, Z., Yang, X., Meiners, S. & Wang, P. (2018). Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nature Communications., 9, 1–9.
21. Kołodziejczyk, M. (2015). The effect of living mulches and conventional methods of weed control on weed infestation and potato yield. Scientia Horticulturae., 191, 127–133. doi: 10.1016/j.scienta.2015.05.016.
22. Kunz, C., Sturm, D., Varnholt, D., Walker, F. & Gerhards, R. (2016). Allelopathic effects and weed suppressive ability of cover crops. Plant, Soil and Environment., 62, 60–66. doi:10.17221/612/2015-pse.
23. Kyryliuk, V. P. (2013). Vplyv tryvalogo zastosuvannja system osnovnogo obrobitku g'runtu na zabur’janenist' sivozminy [The influence of long-term use of systems of the basic soil cultivation on the weediness of crop rotation] Podillian state agrarian and engineering university collection, 21, 39-43 (in Ukrainian).
24. Lawley, Y. E., Weil, R. R. & Teasdale J. R. (2011). Forage radish cover crop suppresses winter annual weeds in fall and before corn planting. Agronomy Journal, 103, 137–144. doi:10.2134/agronj2010.0187.
25. Legris, M., Nieto, C., Sellaro, R., Prat, S. & Casal, J. (2017). Perception and signalling of light and temperature cues in plants. The Plant Journal, 90, 683–697.
26. Li, L., Zhao, H. & Kong, C. (2020). Loliolide the most ubiquitous lactone is involved in barnyardgrass-induced rice allelopathy. Journal of Experimental Botany., 71, 1540–1550.
27. Malinovsky, F., Thomsen, M., Nintemann, S., Jagd, L., Bourgine, B., Burow, M. & Kliebenstein, D. (2017). An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway. Elife., 6, e29353.
28. McErlich, A. F. & Boydston, R. A. (2013). Current State of Weed Management in Organic and Conventional Cropping Systems. Automation: The Future of Weed Control in Cropping Systems., 11–32. doi:10.1007/978-94-007-7512-1_2.
29. Melander, B., Liebman, M., Davis, A. S., Gallandt, E. R., Bàrberi, P., Moonen, A.-C., Rasmussen, J., van der Weide, R. & Vidotto, F. (2017) Non-chemical weed management, in weed research: Expanding Horizons (eds P. E. Hatcher and R. J. Froud-Williams), John Wiley & Sons, Ltd, Chichester, UK., 245–270. doi: 10.1002/9781119380702.ch9
30. Mishchenko, Y. G., Zakharchenko, E.A., Berdin, S.I., Kharchenko, O.V., Ermantraut, E.R., Masyk, I.M. & Tokman, V.S. (2019) Herbological monitoring of efficiency of tillage practice and green manure in potato agrocenosis. Ukrainian Journal of Ecology, 9(1), 210–219. doi: 10.15421/2017_154.
31. Mishchenko, Y., Kovalenko, I., Butenko, A., Danko, Y., Trotsenko, V., Masyk, I., Zakharchenko, E., Hotvianska, A., Kyrsanova, G., and Datsko, O. (2022). Post-Harvest Siderates and Soil Hardness. Ecological Engineering & Environmental Technology., 23(3), 54-63. doi: 10.12912/27197050/147148
32. Ninkovic, V., Rensing, M., Dahlin, I. & Markovic, D. (2019). Who is my neighbor? Volatile cues in plant interactions. Plant Signaling Behavior., 14:1634993.
33. Peters, K., Breitsameter, L. & Gerowitt, B. (2014). Impact of climate change on weeds in agriculture – a review. Agron. Sustain. Dev., 34, 707–721. doi:10.1007/s13593-014-0245-2.
34. Petit, S. & Cordeau, S. (2022). Biological Control for Weed Management. In: Fauvergue, X., et al. Extended Biocontrol. Springer, Dordrecht. doi: 10.1007/978-94-024-2150-7_8
35. Petit, S., Cordeau, S., Chauvel, B., Bohan, D., Guillemin, J. P., & Steinberg, C. (2018). Biodiversity-based options for arable weed management. A review. Agronomy for Sustainable Development, 38, 1–21. doi.org/10.1007/s13593-018-0525-3
36. Price, A. J. & Norsworthy, J. K. (2013). Cover crops for weed management in southern reduced-tillage vegetable cropping systems. Weed Technology, 27, 212–217. doi:10.1614/wt-d-12-00056.1.
37. Pupalienė, R., Sinkevičienė, A., Jodaugienė, D. & Bajorienė, K. (2015). Weed Control by Organic Mulch in Organic Farming System. Weed Biology and Control. doi:10.5772/60120.
38. Romaneckas, K., Šarauskis, E., Avižienytė, D. & Adamavičienė, A. (2015). Weed Control by Soil Tillage and Living Mulch. Weed Biology and Control. doi:10.5772/60030.
39. Santín-Montanyá, M. I., Martín-Lammerding D., Zambrana E., Tenorio J. L. (2016). Management of weed emergence and weed seed bank in response to different tillage, cropping systems and selected soil properties. Soil and Tillage Research., 161, 38–46. doi:10.1016/j.still.2016.03.007.
40. Scherner, A., Melander, B. & Kudsk, P. (2016). Vertical distribution and composition of weed seeds within the plough layer after eleven years of contrasting crop rotation and tillage schemes. Soil and Tillage Research., 161, 135–142. doi.10.1016/j.still.2016.04.005.
41. Shikula, M., Antonets, S., Balaev, A., Bilyanovska, T., Glushchenko, O., Grytsay, M., Demydenko, O., Sax, R., Kal'na-Dubinyuk, T., Kapshtyk, M., Kilher, L., Kysil', V., Kravchenko, Y., Luk'yanenko, A., Makarchuk, O., Man'ko, Y., Melnychuk, D., Petrenko, L., Ridey, N., Rogovsky, S., Sanchenko, R., Tarariko, O., Tarariko, Y., Ferenz, A. & Chernylevsky, M. (2000). G'runtozahysna biologichna systema zemlerobstva v Ukrai'ni [Soil-protective biological crop production system in Ukraine]. Oranta, Kyiv., 389. (in Ukrainian).
Published
2023-12-27
How to Cite
Mishchenko, Y. H., Masyk, I. M., Davydenko, G. A., Lytvynenko, A. V., Ryzhenko, A. T., & Sievidov, O. A. (2023). CONTROL OF WEEDS IN MAIZE GROWING. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 53(3), 43-51. https://doi.org/10.32782/agrobio.2023.3.6