ОГЛЯД ТЕХНОЛОГІЇ ЕЛЕКТРОІСКРОГО ЛЕГУВАННЯ
Ключові слова:
електроіскрове легування, поверхня, покриття, особливі властивості
Анотація
Технологія електроіскрового легування – це новий метод відновлення та зміцнення поверхні металевих матеріалів. Перевагами цього методу є просте обладнання, зручність експлуатації та широкий діапазон застосування. Леговане покриття має більш високу зносостійкість, хорошу стійкість до корозії, відмінні характеристики тертя та інші особливі властивості, тому має кращу практичну цінність і широку перспективу застосування. У цій роботі ознайомлюються з характеристиками та принципом технології електроіскрового легування, аналізується стан досліджень цієї технології та вказується напрямок подальшого розвитку цієї технології.
Посилання
1. Enrique, P. D., Jiao, Z., Zhou, N. Y., & Ehsan, T. (2018). Dendritic Coarsening Model for Rapid Solidification of Ni-Superalloy Via Electrospark Deposition. Journal of Materials Processing Technology, 258: 138-143. doi: https://doi.org/10.1016/j.jmatpro-tec.2018.03.023
2. Zhang, Y., Li, L., Chang, Q., Wang, X., Zhao, Y., Zhu, S., Xu, A., & Gao, X. (2021). Research Status and Prospect of Electro-Spark Deposition Technology. Surface Technology, 50(1): 150-161. doi: https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.01.012
3. Zhang, J., Zhang, L., Liu, H., Rong, Y., Jiao, K., & Shi, Y. (2020). Microstructure and Degradability of Aluminum Alloy Repaired by Electro-Spark Deposition. Surface Technology, 49(10): 224-232. doi: https://doi.org/10.16490/j.cnki.issn.1001-3660.2020.10.025
4. Kuptsov, K.A., Sheveyko, A.N., & Manakova, O.S. (2020). Comparative Investigation of Single-layer and Multilayer Nb-doped TiC Coatings Deposited by Pulsed Vacuum Deposition Techniques. Surface and Coatings Technology, 385: 1-10.
5. Anisimov, E., Khan, A. K., & Ojo, O. A. (2016). Analysis of Microstructure in Electro-Spark Deposited IN718 Superalloy. Materials Characterization, 119: 233-240. doi: https://doi.org/10.1016/j.matchar.2016.07.025
6. Tarel’nik, V. B., Konoplyanchenko, E. V., Kosenko, P. V., et al. (2017). Problems and Solutions in Renovation of the Rotors of Screw Compressors by Combined Technologies. Chemical and Petroleum Engineering, 53(7): 540-546. doi: https://doi.org/10.1007/s10556-017-0378-7
7. Umanskyi, O. P., Storozhenko, M. S., Tarelnyk, V. B., Koval, O. Y., Gubin, Y. V., Tarelnyk, N. V., & Kurinna, T. V. (2020). Electrospark deposition of FeNiCrBSiC– MeB2 coatings on steel. Powder Metallurgy and Metal Ceramics, 59(1), 57-67.
8. Geng, M., Wang, W., & Zhang, X. (2020). Microstructures and Properties of Ni/Ti(C,N) Composite Cermet Coating Prepared by Electrospark Deposition. Surface Technology, 49(4): 222-229. doi: https://doi.org/10.16490/j.cnki.issn.1001-3660.2020.04.025
9. Tarelnyk, V., & Martsynkovskyy, V. (2014). Upgrading of Pump and Compressor Rotor Shafts Using Combined Technology of Electroerosive Alloying. Applied Mechanics and Materials, 630: 397-412. doi: https://doi.org/10.4028/www.scien-tific.net/AMM.630.397
10. Varecha, D., Bronček, J., Kohár, R., Nový, F., Vicen, M., & Radek, N. (2021). Research of friction materials applicable to the multi-disc brake concept. Journal of Materials Research and Technology, 14, 647-661.
11. Tarel’nik, V. B., Paustovskii, A. V., & Tkachenko, Y. G. (2017). Electric-Spark Coatings on a Steel Base and Contact Surface for Optimizing the Working Characteristics of Babbitt Friction Bearings. Surface Engineering and Applied Electrochemistry, 53(3): 285-294. doi: https://doi.org/10.3103/S1068375517030140
12. Yu, H., Lin, Y., Chen, C., Nie, S., Peng, R., Yang, Y., & Yang, S. (2010). Research on the Character of NiCr Coating Deposited on 35CrMo Steel by the Electro-Spark Deposition. Surface Technology, 39(4): 5-7. doi: https://doi.org/10.16490/j.cnki.issn.1001-3660.2010.04.014
13. Tarelnyk, V., Konoplianchenko, I., Martsynkovskyy, V., Zhukov A., & Kurp P. (2018). Comparative Tribological Tests for Face Impulse Seals Sliding Surfaces Formed by Various Methods. Lecture Notes in Mechanical Engineering, 2019:382. doi: https://doi.org/10.1007/978-3-319-93587-4_40
14. Hayriye, E. E., & Batuhan, B. (2020). Effect of Cr-Ni Coated Cu-Cr-Zr Electrodes on the Mechanical Properties and Failure Modes of TRIP800 Spot Weldments. Engineering Failure Analysis, 110: 1-13.
15. Hassan, S., Mehdi, S., & Abbas, B. (2020). Fabrication, Microstructural Characterization and Mechanical Properties Eval-uation of Ti/TiB/TiB2 Composite Coatings Deposited on Ti6Al4V Alloy by Electro-spark Deposition Method. Ceramics International, 46(10): 15276-15284.
16. Lorenzo, M. F., Charles, C. K., & Norman, Y. Z. (2019). The Effect of Pulse Energy on the Defects and Microstructure of Electro-Spark-Deposited Inconel 718. Metallurgical and Materials Transactions A, 50A: 1-10.
17. Zhang, R., Li, J., Xiao, M., Luo, B., & Guo, P. (2013). Research and Application of Micro Nanostructured Coating by Electro-spark. Surface Technology, 42(2): 108-111. doi: https://doi.org/10.16490/j.cnki.issn.1001-3660.2013.02.035
18. Gu, W., Ding, H., Di, P., & Zhu, S. (2010). Investigation on Turbulent Arc in the Process of Electric Spark Automatic Strengthening. China Surface Engineering, 23(6): 66-69. doi: https://doi.org/10.3969/j.issn.1007-9289.2010.06.013
19. Han, H., Guo, J., & Jiao, W. (2019). Discharge Mechanism of Electro-spark Deposition with Rotary Electrode. Transactions of the China Welding Institution, 40(5): 67-72. doi: https://doi.org/10.12073/j.hjxb.2019400129
20. Salmaliyan, M., Malek, G. F., & Ebrahimnia, M. (2017). Effect of Electro Spark Deposition Process Parameters on WC-Co Coating on H13 Steel. Surface and Coatings Technology, 321: 81-89. doi: https://doi.org/10.1016/j.surfcoat.2017.04.040
21. Tarelnyk, V., Martsynkovskiy, V., & Konoplianchenko, I. (2012). Electroerosive Alloying Modes Optimization at Formation of a Special Microrelief on Bronze Sliding Bearings Friction Surfaces Selected Problems of Mechanical Engineering and Maintenance. Wydawnictwo Politechniki Świętokrzyskiej, 188:98-103.
22. Yuan, X., Guan, N., Hou, G., Chen, X., & Ma, S. (2020). Research Progress on Reliability and Preparation of High Tem-perature SolidSelf-lubricating Coatings. Materials Reports, 34(3): 05061-05067. doi: https://doi.org/10.11896/cldb.18110171
23. Wang, J., Wang, D., Wang, X., Jia, Q., Chen, R., & Cui, Y. (2018). Property Improvement of Tin-based Babbitt B83 Based on Metallography Control. Materials Science and Technology, 26(5): 89-96. doi: https://doi.org/10.11951/j.issn.1005-0299.20170368
24. Cao, T., Sun, H., & Wang, X. (2017). Self-lubricating Coating Prepared by Electro-spark Deposition Using Electrode with Drilled Holes at End Face. Journal of Materials Engineering, 45(10): 88-94. doi: https://doi.org/10.11868/j.issn.1001-4381.2016.000691
25. Tarelnyk, V. B., Paustovskii, A. V., & Tkachenko, Y. G. (2017). Electrode Materials for Composite and Multilayer Electro-spark-Deposited Coatings from Ni–Cr and WC–Co Alloys and Metals. Powder Metallurgy and Metal Ceramics, 55(9): 585-595. doi: https://doi.org/10.1007/s11106-017-9843-2
26. Wang, X., Long, W., He, P., Jiu, Y., & Yang, C. (2019). Effect of Aging Treatment on Interfacial Microstructure and Me-chanical Properties of Ni/Babbitt Alloy. Transactions of the China Welding Institution, 40(8): 113-117. doi: https://doi.org/10.12073/j.hjxb.2019400218
27. Raimondas, K., Audrius, Ž., & Artūras, K. (2016). A Study of Tribological Behaviour of W-Co and Cu Electro-spark Alloyed Layers under Lubricated Sliding Conditions. Tribology International, 103: 236-242.
28. Song, Z., Peng, Z., Yan, M., Li, Z., Dong, G., & Zhang, L. (2019). Effect of Fabrication Methods on Microstructures and Mechanical Properties of Tin-based Babbitt Bearings. Chinese Journal of Rare Metals, 38(6): 283-289. doi: https://doi.org/10.13373/j.cnki.cjrm.XY19070031
29. Korneev, P. K., Sheveyko, A. N., Shvindina, N. V., Levashov, E. A., & Shtansky, D.V. (2018). Comparative Study of Ti-C-Ni-Al, Ti-C-Ni-Fe and Ti-C-Ni-Al/Ti-C-Ni-Fe Coatings Produced by Magnetron Sputtering, Electro-Spark Deposition and a Combined Two-Step Process. Ceramics International , 44(7): 7637-7646. doi: https://doi.org/10.1016/j.ceramint.2018.01.187
30. Penyashki, T., Kostadinov, G., Mortev, I., & Dimitrova, E. (2017). Investigation of Properties and Wear of WC, TiC and TiN Based Multilayer Coatings Applied onto Steels C45, 210CR12 and HS6-5-2 Deposited by Non-Contact Electrospark Process. Journal of the Balkan Tribological Association, 23(2): 325-342 .
31. Chen, Y., Yu, M., Cao, K., & Chen, H. (2021). Advance on Copper-based Self-lubricating Coatings. Surface Technology, 50(2): 91-100. doi: https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.02.010
32. Hao, Y., Wang, J., Yang, P., Wang, Y., Liang, X., & Gao, J. (2020). Microstructures and Properties of Tin-Based Babbitt Metal Prepared by Laser Cladding Deposition. Chinese Journal of Lasers, 47(8): 1-10. doi: https://doi.org/10.3788/CJL202047.0802009
33. Hang, Z., Chang, G., & Xiao, W. (2019). A Novel Method to Fabricate Composite Coatings Via Ultrasonic-assisted Electro-spark Powder Deposition. Ceramics International, 45(17): 22528-22537.
34. Wang, L., Cao, G., Ma, X., & Yang, S. (2017). Preparation of NiCrAlY Coating Electro-Spark Deposited on GH4169 Alloy. Transactions of the China Welding Institution, 38(7): 104-108. doi: https://doi.org/10.12073/j.hjxb.20150917001
35. Xu, A., Wang, X., Zhu, S., Chang, Q., Yuan, X., & Zhou, K. (2019). Microstructure and Wear Resistance of TiN Coating Synthesized by ESD with Cluster Electrode. China Surface Engineering, 32(3): 1-8. doi: https://doi.org/10.11933/j.issn.1007-9289.20180727001
36. Wei, X., Chen, Z., Zhong, J.,Huang, Q., Zhang, Y., & Zhang, Y. (2018). Influence of Deposition Atmosphere on Structure and Properties of Mo2FeB2-Based Cermet Coatings Produced by Electro-Spark Deposition. Rare Metal Materials and Engineering, 47(4): 1199-1204.
37. Huang, Q., Chen, Z., Wei, X., Wang, L., Hou, Z., & Yang, W. (2017). Effects of Pulse Energy on Microstructure and Properties of Mo2FeB2-based Ceramet Coatings Prepared by Electro-spark Deposition. China Surface Engineering, 30(3): 89-96. doi: https://doi.org/10.11933/j.issn.1007-9289.20170106002
38. Hong, X., Feng, K., Tan, Y. F., Wang, X., & Tan, H. (2017). Effects of Process Parameters on Microstructure and Wear Resistance of TiN Coatings Deposited on TC11 Titanium Alloy by Electrospark Deposition. Transactions of Nonferrous Metals Society of China, 27(8): 1767-1776. doi: https://doi.org/10.1016/S1003-6326(17)60199-7
39. Xu, A., Wang, X., Zhao, Y., Zhu, S., & Han, G. (2020). Experiments on ESD-Heating Remelting, Rolling Dressing. China Mechanical Engineering, 31(14): 1741-1746. doi: https://doi.org/10.3969/j.issn.1004-132X.2020.14.014
40. Wei, H., Chu, W., Lin, T., & He, P. (2015). Numerical Simulation of Temperature Field of WC-12Co Coating by Monopoles Electro Spark Deposition. Transactions of the China Welding Institution, 36(3): 35-38.
41. Tarelnyk, V., Martsynkovskyy, V., & Dziuba, A. (2014). New Method of Friction Assemblies Reliability and Endurance Improvement. Applied Mechanics and Materials, 630: 388-396. doi: https://doi.org/10.4028/www.scientific.net/AMM.630.388
42. Xu, A., & Liu, Z. (2014). Study of the Ti N Coating Synthesized by EDM of Flexible Titanium Electrode. Transactions of the China Welding Institution, 35(2): 23-27.
43. Pliszka, I., & Radek, N. (2017). Corrosion Resistance of WC-Cu Coatings Produced by Electrospark Deposition. Procedia Engineering, 192: 707-712. doi: https://doi.org/10.1016/j.proeng.2017.06.122
44. Padgurskas, J., Kreivaitis, R., Rukuiža, R, Mihailov V., Agafii V., Kriūkienė R., & Baltušnikas A. (2017). Tribological Prop-erties of Coatings Obtained by Electro-spark Alloying C45 Steel Surfaces. Surface and Coatings Technology, 311: 90-97. doi: https://doi.org/10.1016/j.surfcoat.2016.12.098
45. Afsaneh, E., Seyed, A. G., & Maryam, N. (2021). Biocompatibility Assessments of 316L Stainless Steel Substrates Coated by Fe-based Bulk Metallic Glass Through Electro-Spark Deposition Method. Colloids and Surfaces B: Biointerfaces, 198: 1-9.
46. Norbert, R., Jacek, P., & Aneta, G. M. (2020). The Morphology and Mechanical Properties of ESD Coatings before and after Laser Beam Machining. Materials, 13: 1-17.
2. Zhang, Y., Li, L., Chang, Q., Wang, X., Zhao, Y., Zhu, S., Xu, A., & Gao, X. (2021). Research Status and Prospect of Electro-Spark Deposition Technology. Surface Technology, 50(1): 150-161. doi: https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.01.012
3. Zhang, J., Zhang, L., Liu, H., Rong, Y., Jiao, K., & Shi, Y. (2020). Microstructure and Degradability of Aluminum Alloy Repaired by Electro-Spark Deposition. Surface Technology, 49(10): 224-232. doi: https://doi.org/10.16490/j.cnki.issn.1001-3660.2020.10.025
4. Kuptsov, K.A., Sheveyko, A.N., & Manakova, O.S. (2020). Comparative Investigation of Single-layer and Multilayer Nb-doped TiC Coatings Deposited by Pulsed Vacuum Deposition Techniques. Surface and Coatings Technology, 385: 1-10.
5. Anisimov, E., Khan, A. K., & Ojo, O. A. (2016). Analysis of Microstructure in Electro-Spark Deposited IN718 Superalloy. Materials Characterization, 119: 233-240. doi: https://doi.org/10.1016/j.matchar.2016.07.025
6. Tarel’nik, V. B., Konoplyanchenko, E. V., Kosenko, P. V., et al. (2017). Problems and Solutions in Renovation of the Rotors of Screw Compressors by Combined Technologies. Chemical and Petroleum Engineering, 53(7): 540-546. doi: https://doi.org/10.1007/s10556-017-0378-7
7. Umanskyi, O. P., Storozhenko, M. S., Tarelnyk, V. B., Koval, O. Y., Gubin, Y. V., Tarelnyk, N. V., & Kurinna, T. V. (2020). Electrospark deposition of FeNiCrBSiC– MeB2 coatings on steel. Powder Metallurgy and Metal Ceramics, 59(1), 57-67.
8. Geng, M., Wang, W., & Zhang, X. (2020). Microstructures and Properties of Ni/Ti(C,N) Composite Cermet Coating Prepared by Electrospark Deposition. Surface Technology, 49(4): 222-229. doi: https://doi.org/10.16490/j.cnki.issn.1001-3660.2020.04.025
9. Tarelnyk, V., & Martsynkovskyy, V. (2014). Upgrading of Pump and Compressor Rotor Shafts Using Combined Technology of Electroerosive Alloying. Applied Mechanics and Materials, 630: 397-412. doi: https://doi.org/10.4028/www.scien-tific.net/AMM.630.397
10. Varecha, D., Bronček, J., Kohár, R., Nový, F., Vicen, M., & Radek, N. (2021). Research of friction materials applicable to the multi-disc brake concept. Journal of Materials Research and Technology, 14, 647-661.
11. Tarel’nik, V. B., Paustovskii, A. V., & Tkachenko, Y. G. (2017). Electric-Spark Coatings on a Steel Base and Contact Surface for Optimizing the Working Characteristics of Babbitt Friction Bearings. Surface Engineering and Applied Electrochemistry, 53(3): 285-294. doi: https://doi.org/10.3103/S1068375517030140
12. Yu, H., Lin, Y., Chen, C., Nie, S., Peng, R., Yang, Y., & Yang, S. (2010). Research on the Character of NiCr Coating Deposited on 35CrMo Steel by the Electro-Spark Deposition. Surface Technology, 39(4): 5-7. doi: https://doi.org/10.16490/j.cnki.issn.1001-3660.2010.04.014
13. Tarelnyk, V., Konoplianchenko, I., Martsynkovskyy, V., Zhukov A., & Kurp P. (2018). Comparative Tribological Tests for Face Impulse Seals Sliding Surfaces Formed by Various Methods. Lecture Notes in Mechanical Engineering, 2019:382. doi: https://doi.org/10.1007/978-3-319-93587-4_40
14. Hayriye, E. E., & Batuhan, B. (2020). Effect of Cr-Ni Coated Cu-Cr-Zr Electrodes on the Mechanical Properties and Failure Modes of TRIP800 Spot Weldments. Engineering Failure Analysis, 110: 1-13.
15. Hassan, S., Mehdi, S., & Abbas, B. (2020). Fabrication, Microstructural Characterization and Mechanical Properties Eval-uation of Ti/TiB/TiB2 Composite Coatings Deposited on Ti6Al4V Alloy by Electro-spark Deposition Method. Ceramics International, 46(10): 15276-15284.
16. Lorenzo, M. F., Charles, C. K., & Norman, Y. Z. (2019). The Effect of Pulse Energy on the Defects and Microstructure of Electro-Spark-Deposited Inconel 718. Metallurgical and Materials Transactions A, 50A: 1-10.
17. Zhang, R., Li, J., Xiao, M., Luo, B., & Guo, P. (2013). Research and Application of Micro Nanostructured Coating by Electro-spark. Surface Technology, 42(2): 108-111. doi: https://doi.org/10.16490/j.cnki.issn.1001-3660.2013.02.035
18. Gu, W., Ding, H., Di, P., & Zhu, S. (2010). Investigation on Turbulent Arc in the Process of Electric Spark Automatic Strengthening. China Surface Engineering, 23(6): 66-69. doi: https://doi.org/10.3969/j.issn.1007-9289.2010.06.013
19. Han, H., Guo, J., & Jiao, W. (2019). Discharge Mechanism of Electro-spark Deposition with Rotary Electrode. Transactions of the China Welding Institution, 40(5): 67-72. doi: https://doi.org/10.12073/j.hjxb.2019400129
20. Salmaliyan, M., Malek, G. F., & Ebrahimnia, M. (2017). Effect of Electro Spark Deposition Process Parameters on WC-Co Coating on H13 Steel. Surface and Coatings Technology, 321: 81-89. doi: https://doi.org/10.1016/j.surfcoat.2017.04.040
21. Tarelnyk, V., Martsynkovskiy, V., & Konoplianchenko, I. (2012). Electroerosive Alloying Modes Optimization at Formation of a Special Microrelief on Bronze Sliding Bearings Friction Surfaces Selected Problems of Mechanical Engineering and Maintenance. Wydawnictwo Politechniki Świętokrzyskiej, 188:98-103.
22. Yuan, X., Guan, N., Hou, G., Chen, X., & Ma, S. (2020). Research Progress on Reliability and Preparation of High Tem-perature SolidSelf-lubricating Coatings. Materials Reports, 34(3): 05061-05067. doi: https://doi.org/10.11896/cldb.18110171
23. Wang, J., Wang, D., Wang, X., Jia, Q., Chen, R., & Cui, Y. (2018). Property Improvement of Tin-based Babbitt B83 Based on Metallography Control. Materials Science and Technology, 26(5): 89-96. doi: https://doi.org/10.11951/j.issn.1005-0299.20170368
24. Cao, T., Sun, H., & Wang, X. (2017). Self-lubricating Coating Prepared by Electro-spark Deposition Using Electrode with Drilled Holes at End Face. Journal of Materials Engineering, 45(10): 88-94. doi: https://doi.org/10.11868/j.issn.1001-4381.2016.000691
25. Tarelnyk, V. B., Paustovskii, A. V., & Tkachenko, Y. G. (2017). Electrode Materials for Composite and Multilayer Electro-spark-Deposited Coatings from Ni–Cr and WC–Co Alloys and Metals. Powder Metallurgy and Metal Ceramics, 55(9): 585-595. doi: https://doi.org/10.1007/s11106-017-9843-2
26. Wang, X., Long, W., He, P., Jiu, Y., & Yang, C. (2019). Effect of Aging Treatment on Interfacial Microstructure and Me-chanical Properties of Ni/Babbitt Alloy. Transactions of the China Welding Institution, 40(8): 113-117. doi: https://doi.org/10.12073/j.hjxb.2019400218
27. Raimondas, K., Audrius, Ž., & Artūras, K. (2016). A Study of Tribological Behaviour of W-Co and Cu Electro-spark Alloyed Layers under Lubricated Sliding Conditions. Tribology International, 103: 236-242.
28. Song, Z., Peng, Z., Yan, M., Li, Z., Dong, G., & Zhang, L. (2019). Effect of Fabrication Methods on Microstructures and Mechanical Properties of Tin-based Babbitt Bearings. Chinese Journal of Rare Metals, 38(6): 283-289. doi: https://doi.org/10.13373/j.cnki.cjrm.XY19070031
29. Korneev, P. K., Sheveyko, A. N., Shvindina, N. V., Levashov, E. A., & Shtansky, D.V. (2018). Comparative Study of Ti-C-Ni-Al, Ti-C-Ni-Fe and Ti-C-Ni-Al/Ti-C-Ni-Fe Coatings Produced by Magnetron Sputtering, Electro-Spark Deposition and a Combined Two-Step Process. Ceramics International , 44(7): 7637-7646. doi: https://doi.org/10.1016/j.ceramint.2018.01.187
30. Penyashki, T., Kostadinov, G., Mortev, I., & Dimitrova, E. (2017). Investigation of Properties and Wear of WC, TiC and TiN Based Multilayer Coatings Applied onto Steels C45, 210CR12 and HS6-5-2 Deposited by Non-Contact Electrospark Process. Journal of the Balkan Tribological Association, 23(2): 325-342 .
31. Chen, Y., Yu, M., Cao, K., & Chen, H. (2021). Advance on Copper-based Self-lubricating Coatings. Surface Technology, 50(2): 91-100. doi: https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.02.010
32. Hao, Y., Wang, J., Yang, P., Wang, Y., Liang, X., & Gao, J. (2020). Microstructures and Properties of Tin-Based Babbitt Metal Prepared by Laser Cladding Deposition. Chinese Journal of Lasers, 47(8): 1-10. doi: https://doi.org/10.3788/CJL202047.0802009
33. Hang, Z., Chang, G., & Xiao, W. (2019). A Novel Method to Fabricate Composite Coatings Via Ultrasonic-assisted Electro-spark Powder Deposition. Ceramics International, 45(17): 22528-22537.
34. Wang, L., Cao, G., Ma, X., & Yang, S. (2017). Preparation of NiCrAlY Coating Electro-Spark Deposited on GH4169 Alloy. Transactions of the China Welding Institution, 38(7): 104-108. doi: https://doi.org/10.12073/j.hjxb.20150917001
35. Xu, A., Wang, X., Zhu, S., Chang, Q., Yuan, X., & Zhou, K. (2019). Microstructure and Wear Resistance of TiN Coating Synthesized by ESD with Cluster Electrode. China Surface Engineering, 32(3): 1-8. doi: https://doi.org/10.11933/j.issn.1007-9289.20180727001
36. Wei, X., Chen, Z., Zhong, J.,Huang, Q., Zhang, Y., & Zhang, Y. (2018). Influence of Deposition Atmosphere on Structure and Properties of Mo2FeB2-Based Cermet Coatings Produced by Electro-Spark Deposition. Rare Metal Materials and Engineering, 47(4): 1199-1204.
37. Huang, Q., Chen, Z., Wei, X., Wang, L., Hou, Z., & Yang, W. (2017). Effects of Pulse Energy on Microstructure and Properties of Mo2FeB2-based Ceramet Coatings Prepared by Electro-spark Deposition. China Surface Engineering, 30(3): 89-96. doi: https://doi.org/10.11933/j.issn.1007-9289.20170106002
38. Hong, X., Feng, K., Tan, Y. F., Wang, X., & Tan, H. (2017). Effects of Process Parameters on Microstructure and Wear Resistance of TiN Coatings Deposited on TC11 Titanium Alloy by Electrospark Deposition. Transactions of Nonferrous Metals Society of China, 27(8): 1767-1776. doi: https://doi.org/10.1016/S1003-6326(17)60199-7
39. Xu, A., Wang, X., Zhao, Y., Zhu, S., & Han, G. (2020). Experiments on ESD-Heating Remelting, Rolling Dressing. China Mechanical Engineering, 31(14): 1741-1746. doi: https://doi.org/10.3969/j.issn.1004-132X.2020.14.014
40. Wei, H., Chu, W., Lin, T., & He, P. (2015). Numerical Simulation of Temperature Field of WC-12Co Coating by Monopoles Electro Spark Deposition. Transactions of the China Welding Institution, 36(3): 35-38.
41. Tarelnyk, V., Martsynkovskyy, V., & Dziuba, A. (2014). New Method of Friction Assemblies Reliability and Endurance Improvement. Applied Mechanics and Materials, 630: 388-396. doi: https://doi.org/10.4028/www.scientific.net/AMM.630.388
42. Xu, A., & Liu, Z. (2014). Study of the Ti N Coating Synthesized by EDM of Flexible Titanium Electrode. Transactions of the China Welding Institution, 35(2): 23-27.
43. Pliszka, I., & Radek, N. (2017). Corrosion Resistance of WC-Cu Coatings Produced by Electrospark Deposition. Procedia Engineering, 192: 707-712. doi: https://doi.org/10.1016/j.proeng.2017.06.122
44. Padgurskas, J., Kreivaitis, R., Rukuiža, R, Mihailov V., Agafii V., Kriūkienė R., & Baltušnikas A. (2017). Tribological Prop-erties of Coatings Obtained by Electro-spark Alloying C45 Steel Surfaces. Surface and Coatings Technology, 311: 90-97. doi: https://doi.org/10.1016/j.surfcoat.2016.12.098
45. Afsaneh, E., Seyed, A. G., & Maryam, N. (2021). Biocompatibility Assessments of 316L Stainless Steel Substrates Coated by Fe-based Bulk Metallic Glass Through Electro-Spark Deposition Method. Colloids and Surfaces B: Biointerfaces, 198: 1-9.
46. Norbert, R., Jacek, P., & Aneta, G. M. (2020). The Morphology and Mechanical Properties of ESD Coatings before and after Laser Beam Machining. Materials, 13: 1-17.
Опубліковано
2022-05-05
Як цитувати
Чженчуань, Ч., Гуаньцзюнь, Л., Коноплянченко, Є. В., Тарельник, В. Б., Чжицин, Г., & Сінь, Д. (2022). ОГЛЯД ТЕХНОЛОГІЇ ЕЛЕКТРОІСКРОГО ЛЕГУВАННЯ. Вісник Сумського національного аграрного університету. Серія: Механізація та автоматизація виробничих процесів, (2 (44), 45-53. https://doi.org/10.32845/msnau.2021.2.10